Operator Integral Fraksional yang diperumum pada Ruang Morrey yang diperumum

Safira Nur Aulia Putri, Hairur Rahman, Achmad Nasichuddin

Abstract


The fractional integral operator or Riesz operator is a finite operator of the Lebesgue space. This fractional integral operator maps any real-valued function into the integral form of the fractional integral function. Morrey space is a collection of general form member functions of Lebesgue space. In this study, we will discuss the generalized fractional integral operator on a generalized Morrey space. The proof will be done using partitioned. It can be concluded that the generalized fractional integral operator on Morrey space generalized to Theorem A and Theorems B .

Keywords


Fractional Integral Operator; Morrey Space.

Full Text:

PDF

References


K. M. Limanta, Artist, Ruang Morrey Kuat dan Lemah. [Art]. Institut Teknologi Bandung, 2014.

A. Mu'tazili, Artist, Sifat Inklusi dan Beberapa Konstanta Geometri Untuk Ruang Morrey Kecil. [Art]. Institut Teknologi Bandung, 2019.

R. G. Bartle, The Elements Of Integration and Lebesque Measure, John Willey & Sans, Inc, 1995.

H. L. Royden and P. Fitzpatrick, "Real Analysis Fourth Edition," Pearson Eduational Asia Limited and China Machine Press, Replubic of China, 2010.

Ifonika, Idris, Masta and Gunawan, "Generalized Holder's Inequality in Morrey Spaces," Matematicki Vesnik, vol. 70, no. 4, pp. 326-337, 2018.

H. Gunawan and I. Sihwaingrum, "A weak (p,q) Inequality for Fractional Integral Operator on Morrey spaces of Non-Homogeneous," vol. 3, no. 3, pp. 161-168, 2016.

H. Eridani and E. Nakai, "On generalized fractional integral operators," Scientiac Mathematicae Japonicae, vol. 10, pp. 307-318, 2004.




DOI: https://doi.org/10.18860/jrmm.v3i3.16973

Refbacks

  • There are currently no refbacks.