Implementasi Metode Jaringan Saraf Tiruan Backpropagation Pada Pengenalan Suara Manusia

Mohammad Bagus Dimas Prayugo, Hisyam Fahmi

Abstract


Speech recognition is a process of voice identification using specific parameters taken by the sound catcher. The development of technology gave rise to an event that requires a calculation model on a computer system in speech recognition to be useful in science. One of the computer systems is the Backpropagation Artificial Neural Network (JST). This research uses the Backpropagation method in human speech recognition with the aim of knowing the architecture model and the level of accuracy obtained. Linear Predictive Coding (LPC) is used for voice feature extraction. Voice features in the time domain are converted into the frequency domain using Fast Fourier Transform (FFT). The voice data was divided into 80% training data and 20% testing data. A suitable JST architecture model is selected through training by calculating the optimal weights and biases to recognize the voice patterns well. The best architecture model found was 64-15-1-1. The model was tested using test data to test its ability to recognize voice patterns. Evaluation was done using K-Fold Cross Validation to measure the accuracy of the model. The accuracy value against the training data is 0.95, while against the testing data is 0.088886. The JST architecture model is very good at recognizing voices in training data, but less good in testing. Hopefully, this method can help in the research process related to recognition.


Keywords


Backpropagation; Fast Fourier Transform; Jaringan Saraf Tiruan; Linear Predictive Coding; Pengenalan Suara

Full Text:

Remote XML

References


S. Solikhun, M. Safii, and A. Trisno, “Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 24–36, 2017, doi: 10.30645/j-sakti.v1i1.26.

R. Yolanda, J. TM, and Iqbal, “Penggunaan Jaringan Saraf Tiruan dalam Pengenalan Pola Huruf Hijaiyah Tulisan Tangan,” J. TIKA Fak. Ilmu Komput. Univ. Al Muslim, vol. 3, no. 3, pp. 1–9, 2018.

R. Y. Sipasulta, A. S. M. Lumenta, and S. R. U. A. Sompie, “Simulasi Sistem Pengacak Sinyal Dengan Metode FFT ( Fast Fourier Transform ),” Tek. Elektro dan Komput., pp. 1–9, 2014.

S. H. D. Loppies, “Implementasi Jaringan Saraf Tiruan Backpropagation Untuk Deteksi Wajah Dalam Citra Digital,” Musamus J. Technol. Inf., vol. 1, no. 1, pp. 1–7, 2018, doi: 10.35724/mjti.v1i1.991.

I. Agustina, Fauziah, and A. Gunaryati, “Biometrik Pola Suara dengan Jaringan Saraf Tiruan,” J. Tek. Inform., vol. 9, no. 2, pp. 140–147, 2016.

S. Effendy, “Pengenalan Citra Wajah dengan Menggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Backpropagation,” ComTech, vol. 1, no. 2, pp. 691–700, 2010.

T. A. C. Adinugraha, “Prediksi Jumlah Pendapatan Asli Daerah Kabupaten Boyolali dengan Metode Jaringan Syaraf Tiruan Backpropagation,” Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2016.

L. H. Harum, “Implementasi Metode Extreme Learning Machine (ELM) Untuk Memprediksikan Penjualan Roti (Studi Kasus: Harum Bakery),” Universitas Brawijaya, 2018.

M. Agustin and T. Prahasto, “Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer di Politeknik Negeri Sriwijaya,” J. Sist. Inform. Bisnis, vol. 02, pp. 89–97, 2012.

J. J. Siang, Jaringan Syaraf Tiruan dan Pemograman Menggunakan Matlab. Yogyakarta: ANDI OFFSET, 2005.

I. S. Dinuriyati, “Klasifikasi Pengenal Suara Kicau Burung Menggunakan Metode Linear Predictive Coding (LPC) dan Nearest Neighbor,” Universitas Islam Negeri Maulana Malik Ibrahim Malang, 2019.

Faradiba, “Pengenalan Pola Sinyal Suara Manusia Menggunakan Metode Back Propagation Neural Network,” J. EduMatSains, vol. 2, no. 1, pp. 1–15, 2017.

D. T. Kusuma, “Fast Fourier Transform (FFT) Dalam Transformasi Sinyal Frekuensi Suara Sebagai Upaya Perolehan Average Energy (AE) Musik,” PETIR J. Pengkaj. dan Penerapan Tek. Inform., vol. 14, no. 1, pp. 28–35, 2021, doi: 10.33322/petir.v14i1.1022.

A. Ramadhanty, I. Cholissodin, and C. Dewi, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Extreme Learning Machine,” repository.ub.ac.id, pp. 1–7, 2017.

I. A. M. Supartini, I. K. G. Sukarsa, and I. G. A. M. Srinadi, “Analisis Diskriminan Pada Klasifikasi Desa Di Kabupaten Tabanan Menggunakan Metode K-Fold Cross Validation,” E-Jurnal Mat., vol. 6, no. 2, p. 106, 2017, doi: 10.24843/mtk.2017.v06.i02.p154.




DOI: https://doi.org/10.18860/jrmm.v3i3.22403

Refbacks

  • There are currently no refbacks.