Sifat Rantai Naik pada Modul r-Noetherian serta Keterkaitan Modul r-Noetherian dengan Modul Noetherian dan Modul Hampir Noetherian

Qurratul Aini Az-Zakiyah, Intan Nisfulaila

Abstract


Modules are algebraic structures formed from Abelian groups and rings as scalars. A module is a Noetherian module if it satisfies the ascending chain condition on its submodules. An R-module M is called an almost Noetherian module if every true submodule in M is finitely generated. There is a new class of r-Noetherian modules. Let\ R be a ring and M an R-module, M is said to be an r-Noetherian module if every r-submodule of M is finitely generated. The symbol r refers to the true ideal of the ring with Ann\ a=0. The properties to be studied are the ascending chain properties of r-Noethetian modules. Furthermore,, the relationship of r-Noetherian module with Noetherian module and almost Noetherian module will be studied. This research uses a literature study approach. The stages carried out in this study begin with completing the proof of the lemma relating to the ascending chain on the r-Noetherian Module. Furthermore, completing the proof of the proposition regarding the relationship of the r-Noetherian module with the Noetherian module and almost Noetherian module. The property of ascending chain on r-Noetherian module is that every ascending chain line of r-submodules on r-Noetherian module will stop at a finite step. Furthermore, the connection of r-Noetherian module with Noetherian module and almost Noetherian module is mutual subset

Keywords


ascending chain; linkage; r-Noetherian module; Noetherian module; almost Noetherian module

Full Text:

PDF

References


[1] Andari, A. (2015). Pengantar Teori Modul. Universitas Brawijaya Press.

[2] Anebri, A., & Mahdou, N. (2021). Commutative rings and modules that are r-Noetherian. Bulletin of the Korean Mathematical Society, 58(5), 1221-1233.

[3] Anton, H., & Rorres, C. (2013). Elementary linear algebra: applications version. John Wiley & Sons.

[4] Armendariz, E. P. (1977). Rings with an almost Noetherian ring of fractions. Mathematica Scandinavica, 41(1), 15-18.

[5] Bland, Paul. 2011. Rings and Their Modules. Berlin: De Gruyter.

[6] Dummit, D. S., & Foote, R. M. (2004). Abstract algebra. Vol. 3. Hoboken: Wiley.

[7] Faisol, A., Surodjo, B., & Wahyuni, S. (2019, August). The Relation between Almost Noetherian Module, Almost Finitely Generated Module and T-Noetherian Module. In Journal of Physics: Conference Series (Vol. 1306, No. 1, p. 012001). IOP Publishing.

[8] Fitriani. (2013). Ring Noetherian dan Ring Artinian. Jurnal Sainsmat,2(1), 79-83.

[9] Gallian, J. A. (2016). Contemporary Abstract Algebra (ninth edit). Brooks/Cole Cengage Learning.

[10] Ghoffari, L. H., & Gayatri, M. R. (2023). Ideal, Gelanggang Faktor Dari Gelanggang Noether. Fraktal: Jurnal Matematika dan Pendidikan, 4(1), 31-36.

[11] Gillbert, L. dan Gilbert, J. 2009. Element of Modern Algebra. Boston: nelson Education, Ltd.

[12] Gilbert, L. (2014). Elements of modern algebra. Cengage Learning.

[13] Grillet, P. A. (2007). Semisimple Rings and Modules. Abstract Algebra, 359-392.

[14] Koc, S., & Tekir, Ü. N. S. A. L. (2018). r-Submodules and sr-Submodules. Turkish Journal of Mathematics, 42(4), 1863-1876.

[15] Mardiani, D. (2016). Modul dan keujudan basis pada modul bebas. Mosharafa: Jurnal Pendidikan Matematika, 5(3), 195-204.

[16] Martasari, S., Arnawa, I. M., & Bakar, N. (2020). Sifat-sifat Modul Noetherian. Jurnal Matematika UNAND, 9(2), 121-129.

[17] Mohamadian, R. (2015). r-ideals in commutative rings. Turkish Journal of Mathematics, 39(5), 733-749.

[18] Wahyuni, S., Wijayant

[19] i, I. E., Yuwaningsih, D. A., & Hartanto, A. D. (2021). Teori ring dan modul. UGM PRESS.Wardhana, I. G. A. W. (2022). The Decomposition of a Finitely Generated Module over Some Special Ring. JTAM (Jurnal Teori dan Aplikasi Matematika), 6(2), 261-267.

Wattimena, E. M., Patty, H. W., Patty, D., & Rahakbauw, D. L. (2022). Some Necessary and Sufficient Conditions of Comultiplication Module. Parameter: Jurnal Matematika, Statistika dan Terapannya, 1(2), 79-84.




DOI: https://doi.org/10.18860/jrmm.v3i6.29590

Refbacks

  • There are currently no refbacks.