Penerapan K-Means Clustering dengan Evaluasi V-Measure untuk Pengelompokan Wilayah Berdasarkan Data Potensi Sumber Kesejahteraan Sosial

Riza Mar'atus Sholihah, Fachrur Rozi

Abstract


Social welfare is a key dimension of national development, aimed at achieving social inclusion by enhancing livelihood resilience and systems, particularly in Mojokerto City and Regency. This study aims to group regions in Mojokerto Regency and City based on Social Welfare Resource Potential (PSKS) data using the K-Means Clustering method. This method was chosen for its efficiency in handling high-dimensional data and its ability to produce a predetermined number of structured clusters. The secondary data comprised 12 indicators of social welfare resource potential from the Central Berau of Statistics and Social Office of Mojokerto, reflecting the presence of institutions and community social conditions across 18 sub-districts. Research stages included data standardization using z-score, outlier detection, optimal cluster determination using the Elbow method, K-Means Clustering implementation, and cluster evaluation using the V-Measure. The results indicate that Mojokerto regions can be grouped into five clusters with specific characteristics: urban, border, historical, industrial, and mountainous areas. The V-Measure evaluation yielded a score of 0.756, with homogeneity at 0.859 and completeness at 0.672, indicating accurate clustering quality.

Keywords


K-Means Clustering; V-Measure; Regional Grouping; Social Welfare; Mojokerto

Full Text:

PDF

References


[1] E.N.R.Khakim,“PerbandinganAlgoritmaKlasifikasiDataKesejahteraanSosial KabupatenBan tul,” Jurnal Processor, vol. 17, no. 2, pp. 91–100, 2022.

[2] F. I. Putri, R. Damayanti, and Kismiantini, “Penerapan Algoritma K-Means Untuk Mengelom pokan Kecamatan Di Kabupaten Gunungkidul Berdasarkan Program Keluarga Harapan,” Prosid ing Seminar Nasional Matematika, Statistika, dan Aplikasinya, vol. 2, pp. 408–418, 2022.

[3] D. T. Kusuma and N. Agani, “Prototipe Komparasi Model Clustering Menggunakan Metode K Means DanFCMUntukMenentukanStrategi Promosi : Study Kasus Sekolah Tinggi Teknik-PLN Jakarta,” Jurnal TICOM, vol. 3, no. 3, p. 93460, 2015. Available online.

[4] E.P.P.BryanOrleans,“ClusteringAlgoritma(K-Means),”Https://Sis.Binus.Ac.Id/2022/01/31/Clustering Algoritma-K-Means/, pp. 1–5, 2022.

[5] A. Rosenberg and J. Hirschberg, “V-Measure: A conditional entropy-based external cluster eval uation measure,” EMNLP-CoNLL 2007- Proceedings of the 2007 Joint Conference on Empiri cal Methods in Natural Language Processing and Computational Natural Language Learning, no. June, pp. 410–420, 2007.

[6] Yuhenny, Dwi, “Profil Kemiskinan di Kabupaten Mojokerto Maret 2024,” no. 43, pp. 1–12, 2024.

[7] E. Rahma Meilaniwati and M. Fauzan, “Klasifikasi Penduduk Miskin Penerima PKH Menggu nakan Metode Naïve Bayes dan KNN,” Jurnal Kajian dan Terapan Matematika, vol. 8, no. 2, pp. 75–84, 2022. Available online.

[8] W. T. Wijaya and R. Herawati, “the Analysis of Relationship Between Height of Body and Gain of Medals in Olympics,” Proxies : Jurnal Informatika, vol. 4, no. 2, pp. 149–158, 2024. DOI: 10.24167/proxies.v4i2.12441.

[9] U.Rahardja, Q.Aini, and M.Iqbal, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage, Average Link age dan Ward,” InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, pp. 40–43, 2020.

[10] M.P.Lawuna,Y.Zega,andR.N.Mendrofa,“AnalisisCluster Mahasiswa Pendidikan Matematika Universitas Nias,” Jurnal Cendekia : Jurnal Pendidikan Matematika, vol. 8, no. 2, pp. 946–961, 2024. DOI: 10.31004/cendekia.v8i2.2940.

[11] R. Silvi, “Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia,” Jurnal Matematika "MAN TIK", vol. 4, no. 1, pp. 22–31, 2018. DOI: 10.15642/mantik.2018.4.1.22-31.

[12] I. Ghozali, “GhozaliImam2011AplikasiAnalisisMult.pd f,” p. 129, 2011.

[13] A. Zaki, I. Irwan, and I. A. Sembe, “Penerapan K-Means Clustering dalam Pengelompokan Data (Studi Kasus Profil Mahasiswa Matematika FMIPA UNM),” Journal of Mathematics Computa tions and Statistics, vol. 5, no. 2, p. 163, 2022. DOI: 10.35580/jmathcos.v5i2.38820.

[14] N.A.MaoriandE.Evanita, “Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clus tering,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 277–288, 2023. DOI: 10.24176/simet.v14i2.9630.

[15] V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelom pokan Data Kecelakaan Lalu Lintas Di Kota Semarang,” Jurnal Dinamika Informatika, vol. 12, no. 1, pp. 20–28, 2020. DOI: 10.35315/informatika.v12i1.8159.

[16] W. K. Hardle and L. Simar, “Cluster Analysis BT- Applied Multivariate Statistical Analysis,” in W. K. Hardle and L. Simar, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 385 405. DOI: 10.1007/978-3-662-45171-7_13. Available online.

[17] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis.: Pearson Prentice Hall. 2007, p. 773.

[18] “Penerapan Rekayasa Ulang Iteratif Pada Sistem Informasi Akademik FTIF Its Surabaya,” Juti, vol. 5, no. 1, pp. 19–25, 2006.

[19] C. Lancia, J. Anninga, C. Spitoni, et al., “Method to measure the mismatch between target and achieved received dose intensity of chemotherapy in cancer trials: A retrospective analysis of the MRC BO06 trial in osteosarcoma,” BMJ Open, vol. 9, no. 5, pp. 1–8, 2019. DOI: 10.1136/ bmjopen-2018-022980.




DOI: https://doi.org/10.18860/jrmm.v5i1.34774

Refbacks

  • There are currently no refbacks.