Coral Reef Image Classification Using Multilayer Perceptron

Abd. Charis Fauzan, Hetty Elvina Sari

Abstract


Coral reefs are one of the marine organisms that play many crucial roles for other organisms within them. Coral reefs are often referred to as tropical rainforests because they serve as shelters for small fish and produce food for other marine organisms. Over time, various threats have emerged that disrupt the stability of the marine ecosystem, one of which is coral reef degradation, such as bleaching or physical damage caused by multiple factors. These factors include climate change, chemicals resulting from fishing with explosives, and pollution. As a result, coral reefs become damaged and can no longer serve as a refuge for small species.  Therefore, this study aims to mitigate the impact of coral reef damage by developing a coral reef classification model using one of the deep learning algorithms and artificial neural networks, namely the Multilayer Perceptron (MLP), which employs multiple hidden layers in its modeling process. The classification results using this algorithm achieved an accuracy of 73%, indicating that the model performs well in classifying coral reefs in image form. Thus, it is hoped that deep learning innovations for coral reef classification can contribute significantly to coral reef conservation and marine resource management.


Full Text:

PDF

References


[1] M. Handayani and C. S. Utama Dewi, “Ekosistem Terumbu Karang di Pantai Tawang, Kabupaten Pacitan,” J. Mar. Res., vol. 12, no. 4, pp. 623–629, 2023, doi: 10.14710/jmr.v12i4.38669.

[2] M. C. Widhiatmoko, H. Endrawati, and N. Taufiq-spj, “Potensi Ekosistem Terumbu Karang untuk Pengembangan Ekowisata di Pulau Sintok Taman Nasional Karimunjawa,” vol. 9, no. 4, pp. 374–385, 2020.

[3] M. A. Z. Fuad, M. F. N. Ramadhani, C. S. U. Dewi, M. A. Fikri, and E. B. Herdikusuma, “Pemetaan terumbu karang dengan citra satelit Sentinel-2 dan analisis kondisi karang di kawasan Pantai Pasir Putih, Situbondo Jawa Timur,” J. Pendidik. Geogr., vol. 27, no. 1, pp. 73–87, 2022, doi: 10.17977/um017v27i12022p73-87.

[4] A. K. Tanhomba, Y. Y. Danga, A. Ida, and D. Humbang, “KARANG DI EKOSISTEM PESISIR DESA MONDU,” vol. 2, no. 2023, pp. 314–320, 2024.

[5] J. Imam and B. No, “KLASIFIKASI TERUMBU KARANG MENGGUNAKAN CNN,” pp. 326–332, 2024.

[6] U. Syekh, Y. Al, and M. Gowa, “Kenaikan Suhu Laut dan Kerusakan Karang: Analisis Dampak Jangka Panjang Terhadap Ekosistem Terumbu Karang Sri Magfirah HS,” J. Multidisiplin West Sci., vol. 03, no. 08, pp. 1195–1203, 2024.

[7] P. M. V Caledonian, “Perlindungan Terumbu Karang Menurut UNCLOS 1982 ( Studi Kasus Kerusakan Terumbu Karang,” vol. 2, no. 1, pp. 106–130, 2021.

[8] K. Rajabasa, K. Lampung, and P. Lampung, “Jurnal Pengabdian Fakultas Pertanian Universitas Lampung MENGGUNAKAN TERUMBU BUATAN DI PERAIRAN DESA Jurnal Pengabdian Fakultas Pertanian Universitas Lampung,” vol. 02, no. 01, pp. 280–293, 2023.

[9] R. Firdaus, D. Mualfah, and J. S. Hasanah, “Klasifikasi Multi-Class Penyakit Jantung Dengan SMOTE dan Pearson’s Correlation menggunakan MLP,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 262–271, 2023, doi: 10.37859/coscitech.v4i1.4769.

[10] S. H. Gulo, A. H. Lubis, T. Informatika, F. Teknik, and U. M. Area, “Penerapan Multi-Layer Perceptron untuk Mengklasifikasi Penduduk Kurang Mampu,” vol. 4, no. 2, pp. 51–59, 2024.

[11] I. Daniel, A. Fahmi, L. Ptr, and A. Ichsan, “Klasifikasi Risiko Penyakit Jantung Dengan Multilayer Perceptron,” vol. 4, no. 1, pp. 78–86, 2024.

[12] A. Syaputra, “Klasifikasi Penyakit Daun pada Tebu dengan Pendekatan Algoritma K-Nearest Neighbors , Multilayer Perceptron dan Support Vector Machine,” vol. 15, no. 3, 2024.

[13] M. I. Irawan et al., “OPTIMALISASI ESTIMASI CURAH HUJAN BERDASARKAN CITRA RADAR MENGGUNAKAN MODEL PEMBELAJARAN MESIN MLP,” vol. 24, no. 2, pp. 67–75, 2023.

[14] D. Purba and A. Pranata, “Implementasi Perceptron Untuk Mendiagnosa Kerusakan Mesin Fotocopy,” vol. 1, pp. 314–325, 2022.

[15] P. M. Perceptron, I. Komputer, U. Potensi, and S. Utara, “Komparasi fungsi aktivasi relu dan tanh pada multilayer perceptron 1,2,” vol. 6, no. 2, pp. 200–206, 2022.

[16] P. Theerthagiri, C. Gopala Krishnan, and A. H. Nishan, “Prognostic analysis of hyponatremia for diseased patients using multilayer perceptron classification technique,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 7, no. 26, pp. 1–7, 2021, doi: 10.4108/eai.17-3-2021.169032.

[17] M. Resha, S. Syamsu, Andryanto, and Bakry, “Prediksi Penyebaran Kasus Tuberkulosis dengan Metode Artificial Neural Network dan Multi-Layer Perceptron di Kota Makassar,” JNSTA ADPERTISI J., vol. 2, no. 1, pp. 16–21, 2022.

[18] J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.

[19] B. Pancha, S. Paudel, D. Niraula, B. Thapaliya, and T. Siewerski, “Prediction of the Remaining Useful Life of Lithium-Ion Battery Using Multilayer Perceptron,” vol. 10, no. 1, pp. 1–17, 2024.

[20] O. V. Putra, A. Musthafa, and M. Kholil, “Klasifikasi Intonasi Bahasa Jawa Khas Ponorogo Menggunakan Algoritma Multilayer Perceptron Neural Network,” Pros. Semin. Nas. Penelit. Dan Pengabdi. 2021, pp. 459–464, 2021.




DOI: https://doi.org/10.18860/mat.v17i2.32134

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Abd. Charis Fauzan, Hetty Elvina Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The journal is indexed by :

Dimensions Sinta CrossRef GoogleScholar
Index Copernicus Moraref Portal Garuda

 

_______________________________________________________________________________________________________________

Editorial Office:
Informatics Engineering Department
Faculty of Science and Technology
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-SA 4.0.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550