The Generalized STAR Modeling with Heteroscedastic Effects

Utriweni Mukhaiyar, Syahri Ramadhani

Abstract


In general, the Generalized Space Time Autoregressive (GSTAR) model of space-time assumes constant error variance. In this study, a GSTAR model was built with an error variance that was not constant or had a heteroscedasticity effect, namely the combination of GSTAR–Autoregressive Conditional Heteroskedasticity (ARCH). The parameters of the GSTAR–ARCH model were estimated using the Generalized Least Square (GLS) method to obtain an efficient parameter estimation. As a case study, the GSTAR–ARCH model was applied to the daily mean wind speed data of New Orleans, Florida and Mississippi to predict the occurrence of Hurricane Katrina that occurred in 2005. The results obtained show that the GSTAR model (3;0,0,1)–ARCH(1) predicts Hurricane Katrina very well.


Keywords


GSTAR; ARCH; condtional variance; Generalized Least Squares; heteroskedasticity

Full Text:

PDF

References


D. Masteriana, and U. Mukhaiyar, Monte Carlo Simulation of Error Assumptions in Generalized STAR(1;1) Model. Proceedings on the Jangjeon Mathematical Society 22(1) : 43-50, 2019. DOI: 10.17777/pjms2019.22.1.43

D. Masteriana, M.I. Riani, and U. Mukhaiyar, Generalized STAR (1;1) Model with Outlier - Case Study of Begal in Medan, North Sumatera: Journal of Physics: Conference Series, 12456(1), 012046, 2019. https://iopscience.iop.org/article/10.1088/1742-6596/1245/1/012046/pdf

N.F.I. Fadlilah, U. Mukhaiyar, F. Fahmi, The Generalized STAR(1;1) Modeling with Time Correlated Errors to Red-Chili Weekly Prices of some Traditional Markets in Bandung, West Java. AIP Conf. Proc. 1692(020014), 2015. https://iopscience.iop.org/article/10.1088/1742-6596/1722/1/012100

N.M. Huda, U. Mukhaiyar, and U.S. Pasaribu, The approximation of GSTAR model for discrete cases through INAR model: Journal of Physics: Conference Series, 1722(1), 012100, 2021. https://iopscience.iop.org/article/10.1088/1742-6596/1722/1/012100/pdf

N. Nainggolan, and J. Titaley, Development of generalized space time autoregressive (GSTAR) model, AIP Conference Proceedings 1827, 020034, 2017. https://doi.org/10.1063/1.4979450

N. Nurhayati, U.S. Pasaribu, and O. Neswan, Application of generalized STAR model on GDP data in West European Countries. J. of Probability and Statistics 2012 : 1-16, 2012. https://www.hindawi.com/journals/jps/2012/867056/

R.F. Nugraha, S. Setyowati, U. Mukhaiyar, Prediction of Oil Palm Production using The Weighted Average of Fuzzy Sets Concept Approach. AIP Conf. Proc. 1692 (020008), 2015. https://aip.scitation.org/doi/abs/10.1063/1.4936440

R.F. Engle, Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, Vol 50 (4), pp. 987-1007, 1982. https://www.jstor.org/stable/1912773

S. Ramadhani, Prakiraan Kedatangan Badai Katrina dengan Model Ruang Waktu GSTAR(p;λ_1,λ_2,…,λ_p)-ARCH(1), Laporan Tugas Akhir, Institut Teknologi Bandung, 2016.

S. Setiyowati, U.S. Pasaribu, and U. Mukhaiyar, Non-Stationary Model for Rice Prices in Bandung, Indonesia: The Proceedings of 2012 IEEE Conference on Control, System & Industrial Informatics, (ICA2013), 2013.

S. Setiyowati, R.F. Nugraha, U. Mukhaiyar, Non-stationary time series modeling on caterpillars pest of palm oil for early warning system, AIP Conference Proceedings 1692, 020011, 2015, doi: 10.1063/1.4936439

S.S. Sholihat, S.W. Indratno, and U. Mukhaiyar, The Role of Parameters in Bayesian Online Change Point Detection: Detecting Early Warning of Mount Merapi Eruptions, Heliyon, 2021. (to be published)

S. Borovkova, Svetlana and R. Lopuhaa, Spatial GARCH: A Spatial Approach to Multivariate Volatility Modeling (November 9, 2012). Available at SSRN: https://ssrn.com/abstract=2176781 or http://dx.doi.org/10.2139/ssrn.2176781.

U. Mukhaiyar, and U.S. Pasaribu, A new procedure for generalized STAR modeling using IAcM approach. ITB J. Sci 44(2) : 179-192, 2012.

https://journals.itb.ac.id/index.php/jmfs/article/view/106

U. Mukhaiyar, The Goodness of generalized STAR in spatial dependency observations modeling,. AIP Conf. Proc. 1692 (020012), 2015.

https://aip.scitation.org/doi/abs/10.1063/1.4936436

U. Mukhaiyar, N.M. Huda, K.N. Sari, and U.S. Pasaribu, Analysis of Generalized Space Time Autoregressive with Exogenous Variable (GSTARX) Model with Outlier Factor: Journal of Physics: Conference Series, 1496(1), 012004, 2020. DOI: 10.1088/1742-6596/1496/1/012004

U. Mukhaiyar, N.M. Huda, K.N. Sari, and U.S. Pasaribu, Modeling Dengue Fever Cases by Using GSTAR(1;1) Model with Outlier Factor: Journal of Physics: Conference Series, 1366(1), 012122, 2019.

https://iopscience.iop.org/article/10.1088/1742-6596/1366/1/012122

U. Mukhaiyar, D. Widyanti, and S. Vantika, The Time Series Regression Analysis in Evaluating the Economic Impact of Covid-19 Cases in Indonesia. Journal of Model Assisted Statistics and Applications, 16(3), 2021a. (accepted)

U. Mukhaiyar, A.W. Mahdiyasa, K.N. Sari, and N.T. Noviana, A new weight matrix approach of Generalized Space-Time Autoregressive in modeling the number of vehicles entering the Bandung city through the Purbaleunyi toll, Alexandria Engineering Journal. 2021b. (submitted)

U.S. Pasaribu, U. Mukhaiyar, N.M. Huda, K.N. Sari, and S.W. Indratno, Modelling COVID-19 growth cases of provinces in Java Island by modified spatial weight matrix GSTAR through railroad passenger’s mobility: Heliyon, 7(2), e06025, 2021.

https://www.sciencedirect.com/science/article/pii/S2405844021001304

U.S. Pasaribu, U. Mukhaiyar, S. Setiyowati, An ARCH Model the Electric Power of Extra High Voltage (EHV) Transmission Substation Forecasting in Cawang, Jakarta, Indonesia:The Proceedings of IEEE INAGENTSYS, 1589, 484, 2014.

https://ieeexplore.ieee.org/document/7005725

W.W.S. Wei, Time Series Analysis Univariate and Multivariate Methods, Pearson Addison Weasley, 2006.

Yundari, N.M. Huda, U. Mukhaiyar, U.S. Pasaribu, and K.N. Sari, Stationary Process in GSTAR(1;1) through Kernel Function Approach: AIP Conference Proceedings, 2268, 020010, 2020. https://aip.scitation.org/doi/10.1063/5.0016808

Yundari, U.S. Pasaribu, U. Mukhaiyar, Error Assumptions on Generalized STAR Model, Journal of Mathematical and Fundamental Sciences 49(2): 136-155, 2017. https://journals.itb.ac.id/index.php/jmfs/article/view/3285

Yundari, U.S. Pasaribu, U. Mukhaiyar, M.N. Heriawan, Spatial Weight Determination of GSTAR(1;1) Model by Using Kernel Function, Journal of Physics: Conference Series 1028 (012223): 1-8, 2018.

https://iopscience.iop.org/article/10.1088/1742-6596/1028/1/012223

Yundari and S.W. Rizki, Invertibility of Generalized Space-Time Autoregressive Model with Random Weight, CAUCHY, 6(4):246-259, 2021.

DOI: 10.18860/ca.v6i4.11254




DOI: https://doi.org/10.18860/ca.v7i2.13097

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Utriweni Mukhaiyar, Syahri Ramadhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.