Bühlmann's Credibility Model with Claims of Negative Binomial and 2-Poisson Distribution

Ikhsan Maulidi, Vina Apriliani

Abstract


One of the premium determination techniques is to use credibility theory. In this study, a credibility premium determination model was derived with the best accuracy approach in the form of Bühlmann’s credibility premium. The claim data is assumed to have a Negative Binomial and 2-Poisson distribution. Bühlmann's credibility premium formula is given explicitly for these two data distributions. The obtained model is also applied to the correct data following these distributions. From the simulation results, it is obtained that the premium values are very close in value so that both models can be applied to the data and have a high level of credibility because they have a high credibility factor value.

Keywords


2-Poisson distribution; Bühlmann's credibility; Negative Binomial distribution

Full Text:

PDF

References


T. Futami, Matematika Asuransi Jiwa. Tokyo: Kyoei Life Insurance, 1993.

A. K. Mutaqin, A. Kudus, and Y. Karyana, “Metode parametrik untuk menghitung premi program Asuransi Usaha Tani Padi di Indonesia,” Ethos (Jurnal Penelit. dan Pengabdi. Masyarakat), vol. 4, no. 2, pp. 318–326, 2016, doi: 10.29313/ethos.v0i0.1656.

H. Bühlmann and A. Gisler, A Course in Credibility Theory and Its Applications. Berlin: Springer, 2005.

I. Maulidi and V. Apriliani, “Model kredibilitas Bühlmann dengan frekuensi klaim berdistribusi Binomial Negatif-Lindley,” Limits J. Math. Its Appl., vol. 18, no. 1, pp. 71–78, 2021, doi: 10.12962/limits.v18i1.6690.

T. M. Karina, S. Nurrohmah, and I. Fithriani, “Buhlmann credibility model in predicting claim frequency that follows heterogeneous Weibull count distribution,” in Journal of Physics: Conference Series, 2019, vol. 1218, no. 1, p. 012041. doi: 10.1088/1742-6596/1218/1/012041.

L. M. Wen, W. Wang, and J. L. Wang, “The credibility premiums for exponential principle,” Acta Math. Sin. Engl. Ser., vol. 27, no. 11, pp. 2217–2228, 2011, doi: 10.1007/s10114-011-9198-4.

A. Hassan Zadeh and D. A. Stanford, “Bayesian and Bühlmann credibility for phase-type distributions with a univariate risk parameter,” Scand. Actuar. J., vol. 2016, no. 4, pp. 338–355, 2016, doi: 10.1080/03461238.2014.926977.

A. K. Mutaqin and K. Komarudin, “Perhitungan premi untuk asuransi kendaraan bermotor berdasarkan sejarah frekuensi klaim pemegang polis menggunakan analisis Bayes,” Pythagoras J. Pendidik. Mat., vol. 4, no. 1, pp. 47–55, 2008, doi: 10.21831/pg.v4i1.686.

S. A. Thamrin, A. Lawi, and R. Mahmudah, “Simulasi penaksiran parameter distribusi Weibull campuran untuk data survival heterogen dengan pendekatan Bayesian,” IndoMS J. Stat., vol. 2, no. 2, pp. 37–46, 2014.

A. Palmisano, “Poisson and Binomial distribution,” The Encyclopedia of Archaeological Sciences, no. June. pp. 1–4, 2018. doi: 10.1002/9781119188230.saseas0467.

I. Maulidi, W. Erliana, A. D. Garnadi, S. Nurdiati, and I. G. P. Purnaba, “Penghitungan kredibilitas dengan pustaka actuar dalam R,” J. Math. Its Appl., vol. 16, no. 2, pp. 45–52, 2017, doi: 10.29244/jmap.16.2.45-52.

S. Ghahramani, Fundamentals of Probability. New York (US): Prentice Hall, 2005.

J. Zhao, F. Zhang, C. Zhao, G. Wu, H. Wang, and X. Cao, “The properties and application of Poisson distribution,” in Journal of Physics: Conference Series, 2020, vol. 1550, no. 3, p. 032109. doi: 10.1088/1742-6596/1550/3/032109.

L. J. Bain and M. Engelhardt, Introduction to Probability and Mathematical Statistics. California: Duxbury Press, 1992.

D. Lord and S. R. Geedipally, “The Negative Binomial–Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros,” Accid. Anal. Prev., vol. 43, no. 5, pp. 1738–1742, 2011, doi: 10.1016/j.aap.2011.04.004.

P. C. Consul and G. C. Jain, “A generalization of the Poisson distribution,” Technometrics, vol. 15, no. 4, pp. 791–799, 1973, doi: 10.1080/00401706.1973.10489112.

S. E. Robertson and S. Walker, Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval, no. April. London, 1994. doi: 10.1007/978-1-4471-2099-5.

P. Cholayudth, “Application of Poisson distribution in establishing control limits for discrete quality attributes,” J. Valid. Technol., vol. 13, no. 3, pp. 196–205, 2007, [Online]. Available: https://www.ivtnetwork.com/sites/default/files/PoisionDistrib_01.pdf

T. N. Herzog, Introduction to Credibility Theory. Winsted (US): Actex Publications, 1999.

R. E. Walpole, Pengantar Statistika. Jakarta: Gramedia Pustaka Utama, 1995.

S. Wu, “Poisson-Gamma mixture processes and applications to premium calculation,” Commun. Stat. Methods, pp. 1–29, 2020, doi: 10.1080/03610926.2020.1850791.

S. M. Simanjuntak, “Beberapa Model Banyaknya Klaim dalam Sistem Bonus Malus,” IPB University, 2017.




DOI: https://doi.org/10.18860/ca.v7i4.16400

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ikhsan Maulidi, Vina Apriliani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.