An Inclusive Local Irregularity Vertex Coloring of Dutch Windmill Graph

Arika Indah Kristiana, Lusi Rizzami Prahastiwi, Rafiantika Megahnia Prihandini

Abstract


Let G(V,E) is a simple and connected graph with V(G) as vertex set and E(G) as edge set. An inclusive local irregularity vertex coloring is a development of the topic of local irregularity vertex coloring. An inclusive local irregularity vertex coloring is defined by coloring the graph so that its weight value is obtained by adding up the labels of the neighboring vertex and its label. The inclusive local irregularity chromatic number is defined as the minimum number of colors obtained from coloring the vertex of the inclusive local irregularity in graph G. In this paper, we find the inclusive local irregularity vertex coloring and determine the chromatic number on the Dutch windmill graph using axiomatic deductive and pattern recognition methods. The results of this study are expected to be used as a basis for studies in the development of knowledge related to the inclusive local irregularity vertex coloring

Keywords


An Inclusive Local Irregularity Vertex Coloring; Dutch Windmill Graph

Full Text:

PDF

References


[1] Slamin, Teori Graf dan Aplikasinya. Malang: CV. Dream Litera Buana, 2019.

[2] G. Chartrand and P. Zhang, A first course in graph theory. New York: Dover Publications, Inc., 2012.

[3] Balakrishnan R and Ranganathan K. "A Textbook of Graph Theory,"2012. [online]. Available: http://www.springer.com/series/233

[4] G. Chartrand and P. Zhang, Chromatic graph theory. Chapman and Hall/CRC, 2008.

[5] P. Zhang, A Kaleidoscopic View of Graph Colorings. New York: Springer, 2016.

[6] A. Indah Kristiana, M. I. Utoyo, Dafik, I. Hesti Agustin, R. Alfarisi, and E. Waluyo, “On the chromatic number local irregularity of related wheel graph,” J. Phys. Conf. Ser., vol. 1211, no. 1, 2019, http://dx.doi.org/10.1088/1742-6596/1211/1/012003.

[7] A. I. Kristiana, N. Nikmah, Dafik, R. Alfarisi, M. A. Hasan, and Slamin, “On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs,” Discret. Math. Algorithms Appl., vol. 14, no. 6, p. 2250022, 2022.

[8] A. I. Kristiana, R. Alfarisi, Dafik, and N. Azahra, “Local irregular vertex coloring of some families graph,” J. Discret. Math. Sci. Cryptogr., vol. 25, no. 1, pp. 15–30, 2022.

[9] A. I. Kristiana, M. Hidayat, R. Adawiyah, Dafik, S. Setiawani, and R. Alfarisi, “On Local Irregularity of the Vertex Coloring of the Corona Product of a Tree Graph.,” 2022.

[10] A. I. Kristiana, I. L. Mursyidah, Dafik, R. Adawiyah, and R. Alfarisi, “Local irregular vertex coloring of comb product by path graph and star graph,” Discret. Math. Algorithms Appl., vol. 2250148, 2022.

[11] A. I. Kristiana, Dafik, R. Alfarisi, U. A. Anwar, and S. M. Citra, “An Inclusive Lokal Irregularity Coloring of Graphs. Advances in,” Math. Sci. J., vol. 10, pp. 8941–8946, 2020.

[12] U. A. Anwar, A. I. Kristiana, A. Fatahillah, D. Dafik, and R. Alfarisi, “Pewarnaan Ketakteraturan Lokal Inklusif pada Keluarga Graf Pohon Tree,” Cgant J. Math. Appl., vol. 2, no. 1, pp. 24–30, 2021, doi: 10.25037/cgantjma.v2i1.49.

[13] A. Ma’arif, M. G. Halim, S. Indriani, A. I. Kristiana, and R. Alfarisi, “Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Graf Kipas, Graf Petasan, dan Graf Matahari,” BAREKENG J. Ilmu Mat. Dan Terap., vol. 15, no. 1, 2021.

[14] A. I. Kristiana, M. G. Halim, and R. Adawiyah, “Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Keluarga Graf Unicyclic,” Contemp. Math. Appl., vol. 4, no. 1, pp. 15–27, 2022.

[15] M. R. R. Kanna, R. P. Kumar, and R. Jagadeesh, “Computation of Topological Indices of Dutch Windmill Graph,” Open J. Discret. Math., vol. 06, no. 02, pp. 74–81, 2016, doi: 10.4236/ojdm.2016.62007.




DOI: https://doi.org/10.18860/ca.v8i2.17154

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Arika Indah Kristiana, Lusi Rizzami Prahastiwi, Rafiantika Megahnia Prihandini

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.