Discriminant Analysis for Determination of Early Childhood Education Accreditation In Southeast Sulawesi Province

Makkulau Makkulau, Gusti N.A. Wibawa, Andi Tenri Ampa, Andi Tenri Dio, Sri Harini, Angga Dwi Mulyanto

Abstract


Discriminant Analysis is a statistical analysis that can classify cases on independent variables into groups or categories of dependent variables. The main objective of this research is classify eight indicators of the National education standards (SNP) early childhood and classify the accreditation value of early childhood (PAUD) in Southeast Sulawesi Province. The method used in this study used discriminant analysis. Accreditation value factors used in this study include Standards for Child Development Achievement Levels (X1), Content Standards (X2), Process Standards (X3), Standards for Educators and Education Personnel (X4), Facilities and Infrastructure Standards (X5), Management Standards (X6), Financing Standards (X7) and Education Assessment Standards (X8). Based on the results of data analysis, 8 SNP Indicators qualify as a form of discriminant equation model and accreditation value obtained based on the calculations of the National accreditation organization (BAN) PAUD and Non Fromal Education (PNF) Southeast Sulawesi are classified as follows: there are divided into 3 classifications, namely Accreditation C is 91.7%, Accreditation B is 85.1%, and for Accreditation A is 100%. So, the accuracy of the classification is 87.5%.

Keywords


Discriminant Analysis, Accreditation Score, Indicators, Standar Nasional Pendidikan (SNP) early chilhood, Badan Akreditasi Nasional (BAN)

Full Text:

PDF

References


[1] Badan Akreditasi Nasional Pendidikan Anak Usia Dini Dan Pendidikan Nonformal, Panduan Permohonan Akreditasi Program dan Satuan PAUD dan PNF Tahun 2016. Jakarta: Badan Akreditasi Nasional Pendidikan Anak Usia Dini Dan Pendidikan Nonformal, 2016.

[2] I. Yuliantina, “Pentingnya Akreditasi Satuan Paud,” Badan Akreditasi Nasional Pendidikan Anak Usia Dini Dan Pendidikan Nonformal, 2020.

[3] J. F. Hair Jr., W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 7th ed. New Jersey: Prentice Hall, 2010.

[4] A. C. Rencher, Methods of Multivariate Analysis, 2nd Editio. New York: John Wiley & Sons, 2002.

[5] R. A. Johnson and D. W. Wichern, Applied Multivariate Stastistical Analysis. New Jersey: Prentice Hall, 2007.

[6] Wahana, Pengembangan Analisis Multivariat dengan SPSS 12. Jakarta: Salemba, 2005.

[7] J. Supranto, Analisis Multivariat Arti dan Intepretasi. Jakarta: Rineka Cipta, 2004.

[8] L. i. N. Khiqmah, M. A. Mukid, and A. Prahutama, “Perbandingan Diskriminan Kuadratik Klasik dan Diskriminan Kuadratik Robust Pada Kasus Pengklasifikasian Peminatan Peserta Didik (Studi Kasus di SMA Negeri 1 Kendal Tahun Ajaran 2014/2015),” J. Gaussian, vol. 4, no. 2, pp. 295–304, 2015.

[9] A. R. Fitriana, Nurhasanah, and R. R. Jannah, “Klasifikasi Kecamatan Berdasarkan Nilai Akhir SMA/MA di Kabupaten Aceh Selatan Menggunakan Analisis Diskriminan,” Statistika, vol. 15, no. 2, pp. 87–97, 2015.

[10] M. Billah, N. E. Chandra, and S. Amiroch, “Analisis Diskriminan Terhadap Pengelompokan Mutu Pendidikan Sekolah Menengah Atas di Kabupaten Lamongan,” Unisda J. Math. Comput. Sci., vol. 6, no. 2, pp. 11–20, 2020.

[11] D. Saepuzaman and H. Retnawati, “Analisis Disriminan Dan Klasifikasi Ketepatan Masa Studi Mahasiswa Pendidikan Fisika,” J. Pendidik. Fis. Univ. Islam Negeri Alauddin Makasar, vol. 9, no. 2, pp. 92–102, 2021.

[12] Sulaeman, “Faktor Yang Mempengaruhi Hasil Belajar Siswa Menggunakan Analisis Diskriminan MI Nurul Iman Kota Tangerang Selatan,” Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 2, no. 3, pp. 256–266, 2021.

[13] Badan Akreditasi Nasional Pendidikan Anak Usia Dini Dan Pendidikan Nonformal Provinsi Sullawesi Selatan, Pedoman Kebijakan dan Mekanisme Akreditasi PAUD dan PNF Provinsi. Kendari: Badan Akreditasi Nasional Pendidikan Anak Usia Dini Dan Pendidikan Nonformal Provinsi Sullawesi Selatan, 2018.

[14] T. Ramayah, N. H. Ahmad, H. A. Halim, S. Rohaida, M. Zainal, and M. Lo, “Discriminant analysis : An illustrated example,” African J. Bus. Manag., vol. 4, no. 9, pp. 1654–1667, 2010.

[15] D. D. K. Ghosh and S. S. Kulshrestha, “Comparison of Employee Branding Through Discriminant Analysis,” Int. J. Manag., vol. 7, no. 7, pp. 395–405, 2016, [Online]. Available: http://iaeme.com/Home/issue/IJM?Volume=7&Issue=7

[16] G. M. D. Ganga, K. F. Esposto, and D. Braatz, “Application of discriminant analysis-based model for prediction of risk of low back disorders due to workplace design in industrial jobs,” Work, vol. 41, no. SUPPL.1, pp. 2370–2376, 2012, doi: 10.3233/WOR-2012-0467-2370.

[17] D. Sokari and O. Emmanuel, “Discriminant Analysis of Unemployment and Literacy Rate by State in Nigeria,” vol. 3, no. 1, pp. 44–60, 2020.




DOI: https://doi.org/10.18860/ca.v8i2.17404

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Makkulau Makkulau, Gusti N.A. Wibawa, Andi Tenri Ampa, Andi Tenri Dio, Sri Harini, Angga Dwi Mulyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.