m-Polar Fuzzy B-ideal of B-algebra

Dian Kartika Amandani, Noor Hidayat, Abdul Rouf

Abstract


B-algebra is an algebraic structure related to BCI/BCK-algebra. Many researchers have studied fuzzy B-ideal on B-algebra, m-polar fuzzy set on BCI-algebra and B-algebra, m-polar fuzzy subalgebra on BCI-algebra and B-algebra, m-polar fuzzy ideal on BCI-algebra, m-polar (∈,∈)-fuzzy p-ideal on BCI-algebra, m-polar (∈,∈)-fuzzy q-ideal on BCI-algebra, and m-polar (∈,∈)-fuzzy a-ideal on BCI-algebra. We build a new structure, namely m-polar (∈,∈)-fuzzy B-ideal on B-algebra. This research aims to extend the knowledge of m-polar fuzzy sets, which can be combined with other algebraic structures, besides BCI-algebra. In this study, we investigate and describe the properties of m-polar (∈,∈)-fuzzy B-ideal of B-algebra. We also investigate the connection among m-polar (∈,∈)-fuzzy B-ideal, m-polar fuzzy subalgebra, and m-polar fuzzy ideal. We serve a condition that causes an m-polar fuzzy ideal to become an m-polar (∈,∈)-fuzzy B-ideal. We also serve expansion properties of an m-polar (∈,∈)-fuzzy B-ideal. Futhermore, examples showing the modification of π_i formula are added. The properties of m-polar (∈,∈)-fuzzy B-ideal of B-algebra are obtained by combining and modifying the properties of m-polar (∈,∈)-fuzzy p-ideal, m-polar (∈,∈)-fuzzy q-ideal, and m-polar (∈,∈)-fuzzy a-ideal of BCI-algebra

Keywords


B-algebra; B-ideal; m-polar fuzzy set; m-polar fuzzy ideal; m-polar fuzzy B-ideal

Full Text:

PDF

References


[1] L.A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965.

[2] W. R. Zhang, "Bipolar fuzzy sets and relations," Proceedings of the Fuzzy Information Processing Society Biannua Conference, San Antonio, USA, pp. 305-309, 1994 .

[3] J. Chen, S. Li, S. Ma, X, Wang, “m-polar fuzzy sets: extension of bipolar fuzzy sets,” Science Worlds Journal, pp. 41530, 2014.

[4] Y. Imai and K. Iseki, "On axiom system of propositional calculi," Japan Acad, no. 42, pp. 19-22, 1966.

[5] Neggers and H. S. Kim, "On B-algebras," Mathematic International Journal, no.54, pp. 21-29, 2002.

[6] Y. B. Jun, E. H. Roh, and H. S. Kim, "On fuzzy B-algebras," Chzechoslovak Mathematical Journal, vol. 52, no. 2, pp. 375-384, 2002.

[7] S. S. Ahn and K. Bang, "On fuzzy subalgebras in B-algebra," Community Korean Math, no. 3, pp. 429-437.

[8] C. Yamini and S. Kailasavalli, “Fuzzy B-ideals on B-algebras,” International Journal of Mathematical Archieve, pp. 227-233, 2014.

[9] A. Al-Marsawah and A. G. Ahmad, “m-polar fuzzy ideal of BCI/BCK-algebras,” Journal of King Sand University-Science, no. 31, pp. 1220-1226, 2019.

[10] M. M. Takallo, S. S. Ahn, R. A. Borzooei, and Y. B. Jun, “Multipolar fuzzy p-ideals of BCI-algebras,” Mathematics, no. 7, pp. 1094, 2019.

[11] G. Muhiuddin, M. M. Takallo, R. A. Borzooei, and Y. B. Jun, “m-polar fuzzy q-ideal in BCI-algebras,” Journal of King Saud University-Science, 2020.

[12] R. A. Borzooei, G. R. Rezaei G. Muhiuddin, and Y. B. Jun, “Multipolar fuzzy a-ideal in BCI-algebras,” Journal of Machine Learning and Cybernetics, 2021.

[13] Y. Huang “BCI-Algebras,” Science Press, Beijing, China, 2006.

[14] R. A. Senapati, M. Bhowmik, and M. Pal, “Fuzzy closed ideal of B-alegbras with interval-valued membership function,” International Journal of Fuzzy Mathematical Arc Archive. vol. 1, pp. 79-91, 2013.

[15] H. K. Abdullah and A. A. Atshan, “Complete ideal and n-ideal of B-algebra,” Applied Mathematical Journal, vol. 11, no. 35, pp. 1705-1713, 2017.

[16] R. A. Borzooei, H. S. Kim, Y. B. Jun, and S. S. Ahn, “On multipolar intuitionistic fuzzy B-algebras,” Mathematics, no, 8, pp. 907, 2020.

[17] J. Zhan, Y. B. Jun, B. Davvaz, “On (∈,∈˅q)-fuzzy ideals of BCI-algebras,” Iranian Journal of Fuzzy Systems, vol. 6, no, 1, pp. 81-94.




DOI: https://doi.org/10.18860/ca.v8i2.20694

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dian Kartika Amandani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.