Human Development Index Forecasting with Moving Average, Simple Exponential Smoothing and Naïve Method

Dara Puspita Anggraeni, Ni Komang Sutrasni

Abstract


The purpose of this research is to forecast the Human Development Index (HDI) using the moving average (MA) method, the simple exponential smoothing method and the naïve method. The region forecasted for its HDI is North Lombok Regency, for which it has the lowest HDI in West Nusa Tenggara, Indonesia. The data used for this research is the HDI from 2010 to 2022. The selection of these methods is due to the limited amount of data and the popularity of MA, SES, and Naïve method in the world of forecasting until this day. The results of this research is the MA method which consists of MA MA3, SMA MA5, WMA MA3, WMA MA5, EMA MA3, EMA MA5, and SES tested value α=0.1 and α=0.9 and Naïve method have a high degree of accuracy that can be seen in the Mean Absolute Percentage Error (MAPE) value which is below 10%. However, the chosen method is the best method with the smallest MAPE which is Naïve method with MAPE 1.32% where MAPE is below 10% indicating that the model used is Highly accurate and the result of North Lombok Regency HDI in 2023 is 65.7 which means that the HDI in North Lombok Regency has not changed. HDI in North Lombok Regency stay on middle level

Keywords


Forecasting; IPM; Human Development Index; Moving Average; Simple Exponential Smoothing; Naïve Method; MAPE; Best Model

Full Text:

PDF

References


[1] B. S. Alkire, O. Poverty, H. D. Initiative, and S. Lecturer, “The real wealth of nations,” Econ. (United Kingdom), vol. 403, no. 8791, pp. 30–31, 2012, doi: 10.2469/dig.v42.n4.11.

[2] Badan Pusat Statistik Kabupaten Humbang Hasundutan, Indeks pembangunan manusia. Doloksanggul: BPS Kabupaten Humbang Hasundutan, 2020.

[3] T. Hák, S. Janouˇsková, and B. Moldan, “Sustainable Development Goals : A need for relevant indicators,” Ecol. Indic. j, vol. 60, pp. 565–573, 2016, doi: https://doi.org/10.1016/j.ecolind.2015.08.003.

[4] L. Carlsen, “Gender inequality and development,” Sustain. Sci., vol. 15, no. 3, pp. 759–780, 2020, doi: 10.1007/s11625-019-00767-9.

[5] UNDP, Human Development Report 2021/2022. New York: United Nations Development Programme, 2022.

[6] J. Hickel, “The sustainable development index: Measuring the ecological efficiency of human development in the anthropocene,” Ecol. Econ., vol. 167, no. May 2019, p. 106331, 2020, doi: 10.1016/j.ecolecon.2019.05.011.

[7] N. Lind, “A Development of the Human Development Index,” Soc. Indic. Res., vol. 146, no. 3, pp. 409–423, 2019, doi: 10.1007/s11205-019-02133-9.

[8] BAPPENAS, “Capaian indikator utama pembangunan tahun 2022,” Kedeputian bidang pengembangan regional - kementerian PPN/Bappenas, 2022. https://simreg.bappenas.go.id/home/pemantauan/ipm (accessed Dec. 15, 2022).

[9] Pemprov NTB, “Profil daerah,” Diskominfotik NTB, 2019. https://www.ntbprov.go.id/profil-daerah (accessed Dec. 15, 2022).

[10] Badan Pusat Statistik Provinsi Nusa Tenggara Barat, “[Metode Baru] IPM Kabupaten/Kota 2020-2022,” Badan Pusat Statistik, 2022. https://ntb.bps.go.id/indicator/26/133/1/-metode-baru-ipm-kabupaten-kota.html (accessed Dec. 15, 2022).

[11] I. O. Kirana, Z. M. Nasution, and A. Wanto, “Proyeksi indeks pembangunan manusia di Indonesia menggunakan Metode Statistical Parabolic dalam menyongsong revolusi industri 4.0,” J. Pendidik. Teknol. dan Kejuru., vol. 16, no. 2, p. 202, 2019, doi: 10.23887/jptk-undiksha.v16i2.18178.

[12] K. R. Moran et al., “Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast,” J. Infect. Dis., vol. 214, no. Suppl 4, pp. S404–S408, 2016, doi: 10.1093/infdis/jiw375.

[13] J. B. Lewis, R. J. McGrath, and L. F. Seidel, Essentials of applied quantitative methods for health services managers. Sudbury: Jones and Bartlett Press, 2011.

[14] K. C. Green, A. Graefe, and J. S. Armstrong, “Forecasting Principles,” 2010.

[15] R. Satyarini, “Menentukan Metode Peramalan Yang Tepat,” Bina Ekon. Maj. Ilm. Fak. Ekon. Unpar, vol. 11, no. 1, pp. 59–70, 2007, doi: https://doi.org/10.26593/be.v11i1.670.%25p.

[16] Badan Pusat Statistik Kabupaten Lombok Utara, “Indeks Pembangunan Manusia (IPM) Kabupaten Lombok Utara, 2010-2021,” Badan Pusat Statistik, 2022. https://lombokutarakab.bps.go.id/subject/26/indeks-pembangunan-manusia.html#subjekViewTab3 (accessed Dec. 16, 2022).

[17] G. B. Wendrian, “USULAN PERSEDIAAN OPTIMAL DENGAN METODE PERAMALAN PERMINTAAN DI CV. SUMBER PASIR UTAMA,” Universitas Atma Jaya Yogyakarta, 2021.

[18] S. P. Khan, W. Wahyudin, S. M. Ayuningtyas, W. Rohmah, Z. I. Vindari, and A. G. Azzahra, “Analisa Perbandingan Nilai Akurasi Exponential Smoothing dan Linier Regresion pada Peramalan Permintaan Part Joint Brake Rod KTMY.,” J. Serambi Eng., vol. 8, no. 1, 2023, doi: https://doi.org/10.32672/jse.v8i1.

[19] V. Mandailina and D. Pramita, “Analisis tingkat akurasi fsm dalam peramalan IPM Indonesia menggunakan GUI matlab,” J. Pemikir. dan Penelit. Pendidik. Mat., vol. 1, no. 2, pp. 58–67, 2018.

[20] L. Sucipto and S. Syaharuddin, “Konstruksi forecasting system multi-model untuk pemodelan matematika pada peramalan indeks pembangunan manusia provinsi nusa tenggara barat,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 2, pp. 114–124, 2018, doi: 10.26594/register.v4i2.1263.

[21] R. Y. Irawan, W. L. Yuly Saptomo, and S. Setiyowati, “Penerapan Metode Double Exponential Smoothing Untuk Peramalan Tingkat Indeks Pembangunan Manusia Berbasis Sistem Informasi Goegrafis Di Provinsi Jawa Tengah,” J. Teknol. Inf. dan Komun., vol. 7, no. 2, pp. 18–28, 2019, doi: 10.30646/tikomsin.v7i2.437.

[22] D. Rosadi, Analisis runtun waktu dan aplikasinya dengan R. Yogyakarta: Gadjah Mada University Press, 2014.

[23] A. Kumila, B. Sholihah, E. Evizia, N. Safitri, and S. Fitri, “Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan,” JTAM | J. Teor. dan Apl. Mat., vol. 3, no. 1, p. 65, 2019, doi: 10.31764/jtam.v3i1.764.

[24] L. Wang, H. An, X. Liu, and X. Huang, “Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach,” Appl. Energy, vol. 162, pp. 1608–1618, 2016, doi: 10.1016/j.apenergy.2015.08.132.

[25] Khoiri, “Tiga Kelebihan dan Kekurangan Moving Average,” 2020. https://www.khoiri.com/2020/12/3-kelebihan-dan-kekurangan-moving-average.html (accessed Aug. 22, 2023).

[26] O. Chantarakasemchit, S. Nuchitprasitchai, and Y. Nilsiam, “Forex Rates Prediction on EUR/USD with Simple Moving Average Technique and Financial Factors,” in 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, 2020, pp. 771–774. doi: 10.1109/ECTI-CON49241.2020.9157907.

[27] K. Storm, “Introduction to construction statistics using Excel,” in Industrial Process Plant Construction Estimating and Man-Hour Analysis, 2019, pp. 1–21. doi: 10.1016/b978-0-12-818648-0.00001-6.

[28] P. Sulistyanto, O. Wahyunggoro, and A. I. Cahyadi, “Pengolahan Isyarat Load cell Menggunakan Metode Simple Moving Average Tingkat Dua dan Weighted Moving Average Tingkat Dua untuk Pencarian Titik Referensi,” in Seminar Nasional Aplikasi Teknologi Informasi 2015, Yogyakarta: Jurusan Teknik Informatika Fakultas Teknologi Industri Universitas Islam Indonesia, 2015, pp. 31–35.

[29] M. Aslam, M. Azam, and C. H. Jun, “A new exponentially weighted moving average sign chart using repetitive sampling,” J. Process Control, vol. 24, no. 7, pp. 1149–1153, 2014, doi: 10.1016/j.jprocont.2014.05.001.

[30] A. M. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45, 2019, [Online]. Available: https://www.jsi.stikom-bali.ac.id/index.php/jsi/article/view/193

[31] C. Bergmeir, R. J. Hyndman, and J. M. Benítez, “Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation,” Int. J. Forecast., vol. 32, no. 2, pp. 303–312, 2016, doi: 10.1016/j.ijforecast.2015.07.002.

[32] M. Nakano, A. Takahashi, and S. Takahashi, “Generalized exponential moving average (EMA) model with particle filtering and anomaly detection,” Expert Syst. Appl., vol. 73, pp. 187–200, 2017, doi: 10.1016/j.eswa.2016.12.034.

[33] L. Sanny and S. Haryadi, “Peramalan Jumlah Siswa/I Sekolah Menengah Atas Swasta Menggunakan Enam Metode Forecasting,” Forum Ilm., vol. 10, no. 2, pp. 198–208, 2013.

[34] C. J. Lynch and R. Gore, “Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods,” Data Br., vol. 35, p. 106759, 2021, doi: 10.1016/j.dib.2021.106759.

[35] D. Rosadi, Analisis Ekonometrika&Runtun Waktu Terapan dengan R. Yogyakarta: C.V ANDI OFFSET, 2011.

[36] Aswi and Sukarna, Analisis Deret Waktu: Teori dan Aplikasinya. Andira Publisher, 2006.

[37] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016, doi: 10.1016/j.neucom.2015.12.114.

[38] C. D. Lewis, International and Business Forecasting Methods. Butterworths, 1982.




DOI: https://doi.org/10.18860/ca.v8i2.20705

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dara Puspita Anggraeni, Ni Komang Sutrasni

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.