On Properties of Five-dimensional Nonstandard Filiform Lie algebra

Ricardo Eka Putra, Edi Kurniadi, Ema Carnia

Abstract


In this paper, we study the five-dimensional nonstandard Filiform Lie algebra and their basis elements representations. The aim of this research is to determine the basis elements of five-dimensional nonstandard Filiform Lie algebras representation in the form of  real matrices. The method used in this study is by following Ceballos, Núñez, and Tenorio’s work. The results of this study are five real matrices  as the realization of the basis elements of the five-dimensional nonstandard Filiform Lie algebra. We also discuss some results relate to five-dimensional nonstandard Filiform Lie algebra’s properties. The five-dimensional nonstandard Filiform Lie algebra is always nilpotent. For further research, it can be extended to five classes of Filiform Lie algebra, both standard and nonstandard with six dimensions. Moreover, it can be computed their split torus such that their direct sums are Frobenius Lie algebras.

Keywords


Filiform Lie algebra; matrix representation; Lie bracket

Full Text:

PDF

References


[1] Ó. J. Falcón, R. M. Falcón, J. Núñez, A. M. Pacheco, and M. T. Villar, “Classification of filiform Lie algebras up to dimension 7 over finite fields,” Analele Stiint. ale Univ. Ovidius Constanta, Ser. Mat., vol. 24, no. 2, pp. 185–204, 2016, doi: 10.1515/auom-2016-0036.

[2] M. Ceballos, J. Núñez, and Á. F. Tenorio, “Computing matrix representations of filiform lie algebras,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6244 LNCS, no. September, pp. 61–72, 2010, doi: 10.1007/978-3-642-15274-0_6.

[3] A. A. Kirillov, “Lectures on the Orbit Method Graduate Studies in Mathematics,” Libr. Congess Cat. Data, vol. 64, p. 430, 2004, [Online]. Available: www.ams.org/bookpages/gsm-64

[4] E. Kurniadi, “On Properties of the (2n+1)-Dimensional Heisenberg Lie Algebra,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 4, no. 2, p. 107, 2020, doi: 10.31764/jtam.v4i2.2339.

[5] K. Andrzejewski, J. Gonera, and P. Maślanka, “The schrödinger group and the orbit method,” Int. J. Geom. Methods Mod. Phys., vol. 9, no. 6, pp. 1–7, 2012, doi: 10.1142/S021988781261018X.

[6] C. Roger and J. Unterberger, “The Schr{ö}dinger-Virasoro Lie group and algebra: from geometry to representation theory,” Ann. Henri Poincar{é}, vol. 7, p. 1477, 2006.

[7] M. Ben Halima, “Coadjoint orbits of certain motion groups and their coherent states,” J. Nonlinear Math. Phys., vol. 20, no. 3, pp. 420–430, 2013, doi: 10.1080/14029251.2013.855046.

[8] A. A. Kirillov, “The orbit method and representations of infinite-dimensional Lie groups,” pp. 37–51, 1987, doi: 10.1090/trans2/137/05.

[9] E. Kurniadi, “On Square-Integrable Representations of A Lie Group of 4-Dimensional Standard Filiform Lie Algebra,” CAUCHY J. Mat. Murni dan Apl., vol. 6, no. 2, pp. 84–90, 2020, doi: 10.18860/ca.v6i2.9094.

[10] E. Kurniadi, “Representasi Unitar Tak Tereduksi Grup Lie Dari Aljabar Lie Filiform Real Berdimensi 5,” J. Ilm. Mat. Dan Terap., vol. 17, no. 1, pp. 100–108, 2020, doi: 10.22487/2540766x.2020.v17.i1.15185.

[11] M. Ceballos, J. Núñez, and F. Tenorio, “New Results in the Classification of Filiform Lie Algebras,” Bull. Malaysian Math. Sci. Soc., vol. 40, no. 1, pp. 409–437, 2017, doi: 10.1007/s40840-016-0321-7.

[12] H. Adimi and A. Makhlouf, “Index of graded filiform and quasi filiform Lie algebras,” Filomat, vol. 27, no. 3, pp. 467–483, 2013, doi: 10.2298/FIL1303467A.

[13] W. A. de Graaf, “Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2,” J Algebra, vol. 309, no. 2, pp. 640–653, Mar. 2007, doi: 10.1016/j.jalgebra.2006.08.006.

[14] V. L. de Jesus and C. Schneider, “The center and invariants of standard filiform Lie algebras,” J Algebra, vol. 628, pp. 584–612, Aug. 2023, doi: 10.1016/j.jalgebra.2023.04.002.

[15] V. Ayala, E. Kizil, and I. de Azevedo Tribuzy, “On an algorithm for finding derivations of Lie algebras,” Proyecciones (Antofagasta), vol. 31, no. 1, pp. 81–90, Mar. 2012, doi: 10.4067/S0716-09172012000100008.

[16] D. N. Pham, “ -quasi-Frobenius Lie algebras,” Archivum Mathematicum, no. 4, pp. 233–262, 2016, doi: 10.5817/AM2016-4-233.

[17] M. Gerstenhaber and A. Giaquinto, “The Principal Element of a Frobenius Lie Algebra,” Lett Math Phys, vol. 88, no. 1–3, pp. 333–341, Jun. 2009, doi: 10.1007/s11005-009-0321-8.

[18] A. I. Ooms, “Computing invariants and semi-invariants by means of Frobenius Lie algebras,” J Algebra, vol. 321, no. 4, pp. 1293–1312, Feb. 2009, doi: 10.1016/j.jalgebra.2008.10.026.

[19] A. Diatta and B. Manga, “On Properties of Principal Elements of Frobenius Lie Algebras ,” Journal of Lie Theory, vol. 24, no. 3, pp. 849–864, 2014.

[20] M. A. Alvarez, M. C. Rodríguez-Vallarte, and G. Salgado, “Contact and Frobenius solvable Lie algebras with abelian nilradical,” Commun Algebra, vol. 46, no. 10, pp. 4344–4354, Oct. 2018, doi: 10.1080/00927872.2018.1439048.




DOI: https://doi.org/10.18860/ca.v8i2.21018

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ricardo Eka Putra, Edi Kurniadi, Ema Carnia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.