Dynamic Analysis of the Susceptible-Exposed-Infected-Hospitalized-Critical-Recovered-Dead (SEIHCRD)

Juhari Juhari, Silvi Kurnia

Abstract


This study discusses the dynamic analysis of the Susceptible–Exposed–Infected–Hospitalized–Critical–Recovered–Dead (SEIHCRD) model using the fourth order Runge-Kutta method. The data used in this study is original data on Infected, Hospitalized and Critical cases in Indonesia from August to October 2021. Dynamic analysis of the model is carried out by determining disease-free and endemic equilibrium points, local stability analysis of disease-free and endemic equilibrium points, and determine the basic reproduction number. The result of this analysis is that the number of new infection cases in Indonesia will decrease over time and the COVID-19 outbreak will end. Then a numerical simulation was carried out using the fourth order Runge-Kutta method in dealing with COVID-19 cases in Indonesia. The simulations and calculations show that the rate of contact of susceptible individuals with infected individuals is 0.06 per day, the rate of movement of individuals in the Exposed class to the Infected class is 0.14 per day, the probability of infected individuals being hospitalized with a value of 0.95, the probability that COVID-19 patients become critical and enter the Intensive Care Unit (ICU) with a value of 0.485, and the probability of a critical patient dying with a value of 0.25 affects the slope of Infected, Hospitalized and Critical cases in Indonesia. Where Infected cases will be sloping with an absolute error value of 28%, Hospitalized cases with an absolute error value of 20% and Critical cases with an absolute error value of 33%. This research provides information that it is estimated that the daily infection cases of COVID-19 will decrease and be close to zero. So that infected patients who must be hospitalized and admitted to the Intensive Care Unit (ICU) are also decreasing, it is hoped that the COVID-19 pandemic will not happen again

Keywords


Dynamic Analysis; Fourth Order Runge-Kutta Method; SEIHCRD Model; COVID-19

Full Text:

PDF

References


Singh A., Bajpai M K, “SEIHCRD Model For COVID-19 Spread Scenarios, Disease Predictions And Estimates The Basic Reproduction Number, Case Fatality Rate, Hospital, And ICU Beds Requirement”, CMES - Computer Modeling in Engineering and Sciences, 125(3), 991–1031, 2020. DOI: 10.32604/cmes.2020.012503, 2020

Rangkuti Y M., Sinaga M S., Marpaung F, “A VSEIR Model for Transmission of Tuberculosis (TB) Disease in North Sumatera, Indonesia”, AIP Conference Proceedings, 1635, 201, 2014. DOI: 10.1063/1.4903548

Kwuimy C A K., Nazari F., Jiao X., Rohani P., Nataraj C, “Nonlinear Dynamic Analysis of An Epidemiological Model for COVID-19 Including Public Behavior and Government Action”, Nonlinear Dynamics, 101, 1545-1559, 2020. DOI: 10.1O07/s1 1071-020-05815-z

Tantrakarnapa K., Bhopdhornangkul B, “Challenging The Spread of COVID-19 in Thailand”, ONE HEALTH, 11, 100173, 2020. DOI: 10.1016/j.onehlt.2020.100173

Sun J., Chen X., Zhang Z., Lai S., Zhao B., Liu H., Wang S., Huan W., Zhao R., Ng M T A., Zheng Y, “Forecasting The Long-term Trend Of COVID-19 Epidemic Using A Dynamic Model”, Scientific Reports, 10, 21122, 2020. DOI: 10.1038/s41598-020-78084-w

Rifanti U M., Dewi A R., Hapsari ST, “COVID-19 Mathematical Epidemic Model for Impact Analysis of Large Scale Social Restriction: The Case Study of Indonesia”, IOP Conference Series: Materials Science and Engineering, 115 012066, 2021. DOI: 10.1088/1757-899X/1115/1/012066

Sinaga L P., Nasution H., Kartika D, “Stability Analysis of The Corona Virus (COVID-19) Dynamics SEIR Model in Indonesia”, Journal of Physics: Conference Series, 2021. DOI: 10.1088/1742-6596/1819/1/012043

Burmeister C., Kreinin A., Mendoza-Arriaga R., Rasouli H., Romanko O, “Analysis of Impact of Covid-19 Pandemic on Financial Markets”, Infosys Science Foundation Series, 329-355, 2021. DOI: 10.1007/978-981-16-2450-6_1

Kumar S., Xu C., Ghildayal N., Chandra C., Yang M, “Social Media Effectiveness As A Humanitarian Response to Mitigate Influenza Epidemic and COVID-19 Pandemic”, Annals of Operations Research, 319(1), 823-851, 2022. DOI: 10.1007/s10479-021-03955-y

Rakshit P., Kumar S., Noeiaghdam S., Fernandez-Gamiz U., Altanji M., Santra S S, “Modified SIR Model for COVID-19 Transmission Dynamics: Simulation with Case Study of UK, US and India”, Results In Physics, 40, 105855, 2022. DOI: 10.1016/j.rinp.2022.105855

Qur’ani F, “Analisis Dinamik Model Susceptible-Exposed-Infectious-Hospitalized-Critical-Recovered-Dead ( SEIHCRD ) Pada Penyebaran Covid-19, Etheses UIN MALANG, 2022. URL: http://etheses.uin-malang.ac.id/37095/1/18610060.pdf

Ramadhani A, “Model Epidemi Susceptible-Exposed-Infected-Recovered (Seir) Menggunakan Metode Runge-Kutta Orde Empat Pada Penyebaran Covid-19 Di Indonesia”, Etheses UIN MALANG, 2021. URL: http://etheses.uin-malang.ac.id/32520/1/17610098.pdf

Rifanti U M., Dewi A. R., Nurlaili N., Hapsari S T, “Model Matematika COVID-19 dengan Sumber Daya Pengobatan yang Terbatas”, Limits: Journal of Mathematics and Its Applications, 18(1), 23, 2021. DOI: 10.12962/limits.v18i1.8207

Fadli R, “Butuh Berapa Lama Waktu Penyembuhan Corona”, Halodoc, https://www.halodoc.com/artikel/butuh-berapa-lama-waktu-penyembuhan-corona (accessed Aug. 21, 2022)

Manafe D, “Lama Pasien Covid-19 Dirawat Rata-rata Dua Minggu”, Beritasatu.Com, https://www.beritasatu.com/nasional/651499/lama-pasien-covid19-dirawat-ratarata-dua-minggu (accessed Aug. 21, 2022)

KEMENKES, “Data Ketersediaan Tempat Tidur RS COVID-19”, https://www.kemkes.go.id/article/view/22040400001/Data-Ketersediaan-Tempat-Tidur-RS-COVID-19.html (accessed April. 11, 2022)

KEMENKES, “Peta Sebaran COVID-19”, https://covid19.go.id/peta-sebaran (accessed April. 11, 2022)

Sofiah, “Analisa Penentuan Harga Gain Untuk Kestabilan Pada Sistem Pengendali Dengan Metode Routh-Hurwitz”, Universitas Muhammadiyah Palembang, 3(2), 530–542, 2013. URL: https://jurnal.um-palembang.ac.id/berkalateknik/article/view/358

Mbogo R W., Orwa T O, “SARS-COV-2 outbreak and control in Kenya - Mathematical model analysis”, Infectious Disease Modelling, 6, 370–380, 2021. DOI: 10.1016/j.idm.2021.01.009

Vargas-De-León C, "On the global stability of SIS, SIR and SIRS epidemic models with standard incidence", Chaos, Solitons and Fractals, 44(12), 1106–1110, 2011. DOI:10.1016/j.chaos.2011.09.002




DOI: https://doi.org/10.18860/ca.v8i2.22812

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Juhari Juhari, Silvi Kurnia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.