The Reflexive H-Strength on Some Graphs

Lusia Herni Sullystiawati, Marsidi Marsidi, Eric Dwi Putra, Ika Hesti Agustin

Abstract


Let G be a connected, simple, and undirected graph with a vertex set V(G) and an edge set E(G).  The irregular reflexive -labeling is defined by the function  and  such that  if  and  if , where  max . The irregular reflexive  labeling is called an -irregular reflexive -labeling of the graph  if every two different sub graphs  and  isomorphic to  it holds , where  for the sub graph . The minimum  for graph  which has an -irregular reflexive -labelling is called the reflexive  strength of the graph  and denoted by . In this paper we determine the lower bound of the reflexive  strength of some subgraphs,  on , the sub graph  on  the sub graph  on  and the sub graph  on .


Keywords


H irregular reflexive k-labeling; reflexive H-strength; path; wheel; double fan; triangular ladder; ladder graph.

Full Text:

PDF

References


[1] W. I. Saputri, D. Indiarti, P. S. Matematika, dan S. Maret, “Kekuatan sisi refleksif pada graf rantai segitiga (,” hal. 1–8, 2022.

[2] J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

[3] S. Zaman, J. Alam, dan A. Jabeen, “Super Face Magic Labeling of Subdivided Prism Graph,” Jordan J. Math. Stat., vol. 14, no. 4, hal. 777–785, 2021, doi: 10.47013/14.4.11.

[4] M. Bača, N. Hinding, A. Javed, dan A. Semaničová-Feňovčíková, “Entire H-irregularity strength of plane graphs,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10765 LNCS, no. January, hal. 3–12, 2018, doi: 10.1007/978-3-319-78825-8_1.

[5] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, dan D. Tanna, “Note on edge irregular reflexive labelings of graphs,” AKCE Int. J. Graphs Comb., vol. 16, no. 2, hal. 145–157, 2019, doi: 10.1016/j.akcej.2018.01.013.

[6] F. Ashraf, M. Baca, M. Lascsakova, dan A. Semanicova-Fenovcikova, “On H-irregularity strength of graphs,” Discuss. Math. - Graph Theory, vol. 37, no. 4, hal. 1067–1078, 2017, doi: 10.7151/dmgt.1980.

[7] F. Ashraf, S. C. López, F. A. Muntaner-Batle, A. Oshima, M. Bača, dan A. Semaničová-Feňovčíková, “On total h-irregularity strength of the disjoint union of graphs,” Discuss. Math. - Graph Theory, vol. 40, no. 1, hal. 181–194, 2020, doi: 10.7151/dmgt.2118.

[8] I. H. Agustin, Dafik, Marsidi, dan E. R. Albirri, “On the total H-irregularity strength of graphs: A new notion,” J. Phys. Conf. Ser., vol. 855, no. 1, 2017, doi: 10.1088/1742-6596/855/1/012004.

[9] M. Naeem, M. K. Siddiqui, M. Bača, A. Semaničová-Feňovčíková, dan F. Ashraf, “On Edge H-Irregularity Strengths of Some Graphs,” Discuss. Math. - Graph Theory, vol. 41, no. 4, hal. 949–961, 2021, doi: 10.7151/dmgt.2228.

[10] R. Nisviasari, Dafik, dan I. H. Agustin, “The total H-irregularity strength of triangular ladder and grid graphs,” J. Phys. Conf. Ser., vol. 1211, no. 1, 2019, doi: 10.1088/1742-6596/1211/1/012005.

[11] R. Nisviasari, Dafik, dan I. H. Agustin, “The total H-irregularity strength of triangular ladder graphs,” J. Phys. Conf. Ser., vol. 1465, no. 1, 2020, doi: 10.1088/1742-6596/1465/1/012026.

[12] M. Bača, S. Jendrol’, M. Miller, dan J. Ryan, “On irregular total labellings,” Discrete Math., vol. 307, no. 11–12, hal. 1378–1388, 2007, doi: 10.1016/j.disc.2005.11.075.

[13] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, dan D. Tanna, “On edge irregular reflexive labellings for the generalized friendship graphs,” Mathematics, vol. 5, no. 4, hal. 1–11, 2017, doi: 10.3390/math5040067.

[14] D. Tanna, J. Ryan, dan A. Semaničová-Feňovčíková, “Edge irregular reflexive labeling of prisms and wheels,” Australas. J. Comb., vol. 69, no. 3, hal. 394–401, 2017.

[15] D. Tanna, J. Ryan, A. Semaničová-Feňovčíková, dan M. Bača, “Vertex irregular reflexive labeling of prisms and wheels,” AKCE Int. J. Graphs Comb., vol. 17, no. 1, hal. 51–59, 2020, doi: 10.1016/j.akcej.2018.08.004.

[16] I. H. Agustin, M. I. Utoyo, Dafik, M. Venkatachalam, dan Surahmat, “On the Construction of the Reflexive Vertex k -Labeling of Any Graph with Pendant Vertex,” Int. J. Math. Math. Sci., vol. 2020, 2020, doi: 10.1155/2020/7812812.

[17] F. Ashraf, M. Bača, A. Semaničová-Feňovčíková, dan M. K. Siddiqui, “On H-irregularity strength of ladders and fan graphs,” AKCE Int. J. Graphs Comb., vol. 17, no. 1, hal. 213–219, 2020, doi: 10.1016/j.akcej.2019.04.002.




DOI: https://doi.org/10.18860/ca.v9i1.23172

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Marsidi Marsidi, Lusia Herni Sullystiawati, Eric Dwi Putra, Ika Hesti Agustin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.