On H-irregular reflexive labeling of graph

Marsidi Marsidi, Ika Hesti Agustin, Dafik Dafik, Md. Saidur Rahman, Lusia Herni Sullystiawati

Abstract


By an irregular reflexive  labeling, we mean a function  and  such that  if  and  if , where  max . Let , the irregular reflexive  labeling is called an -irregular reflexive -labeling of graph  if every two different sub graphs  and  isomorphic to , it holds , where . The minimum  for graph  which has an -irregular reflexive -labeling is called the reflexive  strength of graph and denoted by . In this paper we initiate to study the lower bound of the reflexive  strenght of graphs and the reflexive  strenght of flower, Shack  and book graph, where  isomorphic to and , respectively.


Keywords


H-irregular reflexive k-labeling; Reflexive H strenght; Flower graph; Shackle graph; Book graph

Full Text:

PDF

References


[1] Ali Ahmad and M. 2013. On Vertex Irregular Total Labelings. Ars Combinatoria, 112:129-139.

[2] F. Ashraf, M. , M. and A. 2017. On H-Irregularity Strenght of Graphs. Discussiones Mathematicae: Graph Theory, 37:1067-1078.

[3] Ika Hesti Agustin1, Dafik, Marsidi and Ermita Rizki Albirri, On the total H-irregularity stenght of graph: A new nation, J. Phys,: Conf. Ser.885 012004, 2017

[4] Joseph A. Gallian. 2017. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 20:1-432.

[5] T. K. Maryati, E. T. Baskoro, A. N. M. Salman, and J. Ryan. 2010. On H-Supermagic Labelings for Certain Shackles and Amalgamations of a Connected Graph. Utilutas Mathematica, 1-10.

[6] D. Tanna, J. Ryan, and A. 2017. Reflexive Edge Irregular Labelling of Prisms and Wheels. Australas. J. Combin, 69:394-401.

[7] Agustin I.H, Imam Utoyo, Dafik, M. Venkatachalam, and Surahmat. 2020. On the construction of the reflexive vertex k-labeling of any graph with pendant vertex. International Journal of Mathematics and Mathematical Sciences. Volume 2020, Article ID 7812812. https://doi.org/10.1155/2020/7812812.

[8] Tanna, D., J. Ryan, A. dan M. 2018. Vertex Irregular Reflexive Lebeling of Prisms and Wheels. AKCE International Journal of Graphs and Combinatorics.

[9] Ika Hesti Agustin, Imam Utoyo, Dafik, M. Venkatachalam. 2020. Edge irregular reflexive labeling of some tree graphs. Journal of Physics: Conference Series. Volume 1543. https:10.1088/1742-6596/1543/1/012008.

[10] M. M. Irfan, J. Ryan, A. D. Tanna, 2017. On Edge Irregular Reflexive Labelling for the Generalized Friendship Graphs. Mathematics. Volume 567. https:10.3390/math5040067.

[11] D. Tanna, J. Ryan, A. 2017. Edge Irregular Reflexive Labeling of Prisms and Wheels. Australasian Journal of Combinatorics. Volume 69(3).

[12] J. L. G. Guirao, S. Ahmad, M.K.Siddiqui, M. Ibrahim. 2018. Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph. Mathematics. Volume 6(304). https:10.3390/math61203004.

[13] M. M. Irfan, J. Ryan, A. D. Tanna. 2019. Note on edge irregular reflexive labelings of graphs. AKCE International Journal of Graphs and Combinatorics. Volume 16. https:doi.org/10.1016/j.akcej.2018.01.013.

[14] M. Ibrahim, S. Majeed, M.K. Siddiqui. 2020. Edge Irregular Reflexive Labeling for Star, Double Star and Caterpillar Graphs. TWMS J. App. and Eng. Math. Volume 10(3). https:10.3390./math6120304.

[15] Ika Hesti Agustin, Dafik, Imam Utoyo, Slamin, M. Venkatachalam. 2021. The Reflexive Edge Strenght on Some Almost Regular Graphs. Heliyon Volume 7. DOI:https://doi.org/10.1016/j.heliyon.2021.e06991.

[16] I.H. Agustin, L. Susilowati, Dafik, I.N. Cangul, and N. Mohanapriya, On the vertex irregular reflexive labeling of several regular and regular-like graphs, J. Discrete Math. Sci. Crytogr 25 (2022), no. 5, 1457-1473.

[17] I.H. Agustin, M.I. Utoyo, Dafik, and M. Venkatachalam, The vertex irregular reflexive labeling of some almost regular graph, Palest. J. Math. 10 (2021), no. Special Issue II, 83-91.

[18] R. Alfarisi, J. Ryan, M.K. Siddiqui, Dafik, and I.H. Agustin, Vertex irregular reflexive labeling of disjoint union of gear and book graphs, Asian-Eur. J. Math. 14 (2021), no. 5, Article ID:2150078.

[19] D. E. Nurvazly and K A Sugeng, Graceful Labelling of Edge Amalgamation of Cycle Graph, IOP Conf. Series: Journal of Physics: Conf. Series 1108 (2018) 012047

[20] Agustin, I. H. Dafik, Marsidi and Albirri, E. R. 2017. "On the total H-irregularity strength of graphs: A new notion", J. Phys.: Conf. Ser.855 012004.




DOI: https://doi.org/10.18860/ca.v8i2.23753

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ika Hesti Agustin, Marsidi Marsidi, Dafik Dafik, Md. Saidur Rahman, Lusia Herni Sullystiawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.