Estimating Missing Panel Data with Regression and Multivariate Imputation by Chained Equations (MICE)
Abstract
Keywords
Full Text:
PDFReferences
[1] D. N. Gujarati, Basic econometrics. Prentice Hall, 2022.
[2] A. Bell and K. Jones, “Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data,” Political Sci Res Methods, vol. 3, no. 1, pp. 133–153, 2015.
[3] A. R. Alfarisi, H. Tjandrasa, and I. Arieshanti, “Perbandingan Performa antara Imputasi Metode Konvensional dan Imputasi dengan Algoritma Mutual Nearest Neighbor,” Jurnal Teknik ITS, vol. 2, no. 1, pp. A73–A76, 2013.
[4] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis. John Wiley & Sons, 2021.
[5] K. M. Lang and T. D. Little, “Principled missing data treatments,” Prevention science, vol. 19, no. 3, pp. 284–294, 2018.
[6] A. J. Izenman, Modern multivariate statistical techniques, vol. 1. Springer, 2008.
[7] M. W. Heymans and J. W. R. Twisk, “Handling missing data in clinical research,” J Clin Epidemiol, vol. 151, pp. 185–188, 2022.
[8] R. M. Cook, “Addressing missing data in quantitative counseling research,” Counseling Outcome Research and Evaluation, vol. 12, no. 1, pp. 43–53, 2021.
[9] J. T. Chi, E. C. Chi, and R. G. Baraniuk, “k-pod: A method for k-means clustering of missing data,” Am Stat, vol. 70, no. 1, pp. 91–99, 2016.
[10] T. F. Johnson, N. J. B. Isaac, A. Paviolo, and M. González‐Suárez, “Handling missing values in trait data,” Global Ecology and Biogeography, vol. 30, no. 1, pp. 51–62, 2021.
[11] G. T. Waterbury, “Missing data and the Rasch model: The effects of missing data mechanisms on item parameter estimation,” J Appl Meas, vol. 20, no. 2, pp. 154–166, 2019.
[12] D. Feng, Z. Cong, and M. Silverstein, “Missing data and attrition,” in Longitudinal Data Analysis, Routledge, 2013, pp. 71–96.
[13] S. Van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained equations in R,” J Stat Softw, vol. 45, pp. 1–67, 2011.
[14] R. J. A. Little and D. B. Rubin, Statistical analysis with missing data, vol. 793. John Wiley & Sons, 2019.
[15] P. Li, E. A. Stuart, and D. B. Allison, “Multiple imputation: a flexible tool for handling missing data,” JAMA, vol. 314, no. 18, pp. 1966–1967, 2015.
[16] J. M. Jerez et al., “Missing data imputation using statistical and machine learning methods in a real breast cancer problem,” Artif Intell Med, vol. 50, no. 2, pp. 105–115, 2010.
[17] W.-C. Lin and C.-F. Tsai, “Missing value imputation: a review and analysis of the literature (2006–2017),” Artif Intell Rev, vol. 53, pp. 1487–1509, 2020.
[18] W.-C. Lin, C.-F. Tsai, and J. R. Zhong, “Deep learning for missing value imputation of continuous data and the effect of data discretization,” Knowl Based Syst, vol. 239, p. 108079, 2022.
[19] A. M. Gad and R. H. M. Abdelkhalek, “Imputation methods for longitudinal data: A comparative study,” International Journal of Statistical Distributions and Applications, vol. 3, no. 4, p. 72, 2017.
[20] C. K. Enders, Applied missing data analysis. Guilford Publications, 2022.
[21] H. Romaniuk, G. C. Patton, and J. B. Carlin, “Multiple imputation in a longitudinal cohort study: a case study of sensitivity to imputation methods,” Am J Epidemiol, vol. 180, no. 9, pp. 920–932, 2014.
[22] J. Brüderl and V. Ludwig, “Fixed-effects panel regression,” The Sage handbook of regression analysis and causal inference, pp. 327–357, 2015.
[23] C. Hsiao, Analysis of panel data, no. 64. Cambridge university press, 2022.
[24] K. Mahmud, A. Mallik, M. F. Imtiaz, and N. Tabassum, “The bank-specific factors affecting the profitability of commercial banks in Bangladesh: A panel data analysis,” International Journal of Managerial Studies and Research, vol. 4, no. 7, pp. 67–74, 2016.
[25] J. M. Wooldridge, Introductory econometrics: A modern approach. Cengage learning, 2015.
[26] V. M. Musau, A. G. Waititu, and A. K. Wanjoya, “Modeling panel data: Comparison of GLS estimation and robust covariance matrix estimation,” American Journal of Theoretical and Applied Statistics, vol. 4, no. 3, pp. 185–191, 2015.
[27] R. Zulfikar and M. M. STp, “Estimation model and selection method of panel data regression: an overview of common effect, fixed effect, and random effect model,” JEMA: Jurnal Ilmiah Bidang Akuntansi, pp. 1–10, 2018.
[28] J. N. Wulff and L. E. Jeppesen, “Multiple imputation by chained equations in praxis: guidelines and review,” Electronic Journal of Business Research Methods, vol. 15, no. 1, pp. 41–56, 2017.
[29] G. Chhabra, V. Vashisht, and J. Ranjan, “A comparison of multiple imputation methods for data with missing values,” Indian J Sci Technol, vol. 10, no. 19, pp. 1–7, 2017.
[30] S. Van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained equations in R,” J Stat Softw, vol. 45, pp. 1–67, 2011.
[31] J. R. van Ginkel and P. M. Kroonenberg, “Analysis of variance of multiply imputed data,” Multivariate Behav Res, vol. 49, no. 1, pp. 78–91, 2014.
[32] C. Chen, J. Twycross, and J. M. Garibaldi, “A new accuracy measure based on bounded relative error for time series forecasting,” PLoS One, vol. 12, no. 3, p. e0174202, 2017.
[33] J. J. M. Moreno, A. P. Pol, A. S. Abad, and B. C. Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013.
[34] J. J. Hox, M. Moerbeek, and R. Van de Schoot, Multilevel analysis: Techniques and applications. Routledge, 2017.
DOI: https://doi.org/10.18860/ca.v9i1.24824
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Budi Susetyo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.