Local Polynomial Estimator in The Nonparametric Model of Inflation in Indonesia
Abstract
Inflation is a general and continuous increase in prices of goods and services over a certain period. Nonparametric regression analysis can be used to model inflation data that does not form a particular pattern. This study applies a local polynomial nonparametric method to model the rate of change rate in the inflation over a period considering two factors influencing inflation: the rate of change in the BI interest rate and the rate of change rate in the money supply from the previous period. The bivariate local polynomial method estimates the nonparametric regression function by considering the optimum Gaussian kernel bandwidth and polynomial order using the Taylor series expansion and WLS estimator. The optimal local polynomial nonparametric regression model was obtained based on a minimum GCV value of 0.015108 with two optimum Gaussian kernel bandwidth values of 0.1 and 0.03 in polynomial order of 1. The best model had a MAPE value of 3.45%, showing that all the prediction models were highly accurate. The benefits gained are additional information and consideration for determining monetary policy, especially inflation in Indonesia, by determining the BI interest rate and money supply.
Keywords
Full Text:
PDFReferences
L. Rafika and G. Kusuma Wardana, “Influence Inflation, BI Rate, Ratio Profit Sharing, GDP Against Mudharabah Savings At Islamic Commercial Banks,” in ICONIES, Malang: Faculty of Economics UIN Maulana Malik Ibrahim, 2023.
A. Salim and A. Purnamasari, “Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi Indonesia,” Ekonomica Sharia: Jurnal Pemikiran dan Pengembangan Ekonomi Syariah, vol. 7, no. 1, Aug. 2021, doi: https://doi.org/10.36908/esha.v7i1.268.
H. Y. Kalalo, T. Oldy Rotinsulu, and M. B. Th Maramis, “Analisis Faktor-Faktor Yang Mempengaruhi Inflasi Di Indonesia Periode 2000-2014,” Jurnal Berkala Ilmiah Efisiensi, vol. 16, no. 01, pp. 706–717, 2016, Accessed: Jan. 20, 2025. [Online]. Available: https://ejournal.unsrat.ac.id/index.php/jbie/article/viewFile/11653/11245
N. Agusmianata, T. Militina, and D. Lestari, “Pengaruh Jumlah Uang Beredar Dan Tingkat Suku Bunga Serta Pengeluaran Pemerintah Terhadap Inflasi Di Indonesia,” FORUM EKONOMI, vol. 19, no. 2, p. 2017, 2017, doi: http://dx.doi.org/10.29264/jfor.v19i2.2125.
T. Nur and M. Alfon, “Analisis Faktor-Faktor Yang Mempengaruhi Inflasi Di Indonesia Periode 2005-2014 (Pendekatan Error Correction Model),” ESENSI, vol. 18, no. 2, 2015, [Online]. Available: https://www.researchgate.net/publication/342302670
T. M. Langi, V. Masinambow, and H. Siwu, “Analisis Pengaruh Suku Bunga Bi, Jumlah Uang Beredar, Dan Tingkat Kurs Terhadap Tingkat Inflasi Di Indonesia,” Jurnal Berkala Ilmiah Efisiensi, vol. 14, no. 2, pp. 44–58, May 2014.
F. Andrianus and A. Niko, “Analisa Faktor-faktor Yang Mempengaruhi Inflasi Di Indoesia Periode 1997:3 - 2005:2,” Ekonomi Pembangunan, Kajian Ekonomi Negara Berkembang, vol. 11, no. 2, pp. 173–186, Aug. 2006, doi: https://doi.org/10.20885/ejem.v11i2.533.
A. Zulfikar, T. Suharti, and D. Yudhawati, “Pengaruh Kurs Valuta Asing Dan Inflasi Terhadap Pendapatan Ekspor,” Jurnal Ilmu Manajemen “Manager”, UIKA Bogor, vol. 2, no. 4, pp. 475–486, 2019, doi: https://doi.org/10.32832/manager.v2i4.3793.
E. Wahyudi, “Pengaruh Suku Bunga Bank Indonesia (Bi Rate) Dan Produk Domestik Bruto (PDB) Terhadap Laju Inflasi di Indonesia Periode Tahun 2000.1-2013.4,” Jurnal Ilmiah Fakultas Ekonomi dan Bisnis, 2014, Accessed: Jan. 21, 2025. [Online]. Available: https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/1214
B. Nugraha, “Regresi Nonparametrik Polinomial Lokal Untuk Memodelkan Inflasi di Indonesia,” UIN Maulana Malik Ibrahim Malang, Malang, 2023. Accessed: Jan. 21, 2025. [Online]. Available: http://etheses.uin-malang.ac.id/53953/
N. I. Sari, “Faktor-Faktor Ekonomi Yang Mempengaruhi Inflasi Di Jawa Timur,” Jurnal Pendidikan Ekonomi (JUPE), vol. 1, no. 1, 2013, doi: http://dx.doi.org/10.37859/jae.v10i1.1917.
N. Chamidah, “Inferensi Kurva Regresi Nonparametrik Berdasarkan Estimator Polinomial Lokal Dengan Error Lognormal,” Jurnal Penelitian Med. Eksakta, vol. 7, no. 1, pp. 61–69, Apr. 2008, Accessed: Jan. 21, 2025. [Online]. Available: https://repository.unair.ac.id/42757/
J. Hendrian, S. Suparti, and A. Prahutama, “Pemodelan Harga Emas Dunia Menggunakan Metode Nonparametrik Polinomial Lokal Dilengkapi GUI R,” Jurnal Gaussian, vol. 10, no. 4, pp. 604–616, 2021, doi: https://doi.org/10.14710/j.gauss.10.4.605-616.
S. Suparti and A. Prahutama, “Pemodelan Regresi Nonparametrik Menggunakan Pendekatan Polinomial Lokal Pada Beban Listrik di Kota Semarang,” Media Statistika, vol. 9, no. 2, p. 85, Jan. 2016, doi: 10.14710/medstat.9.2.85-93.
S. M. Amien, Penggunaan Kernel Uniform, Gaussian Dan Triangle Pada Analisis Path Nonparametrik Polinomial Lokal. repository.ub.ac.id, 2020. [Online]. Available: http://repository.ub.ac.id/183356/
S. Ghosal and A. van der Vaart, Fundamentals of Nonparametric Bayesian Inference. United Kingdom: Cambridge University Press, 2017. [Online]. Available: www.cambridge.org/statistics.
H. Basri, “Pemodelan Regresi WLS Untuk Data Dalam Studi Kecerdasan Emosional,” Journal of Early Childhood Education, Educhild, no. 2, 2020, doi: http://dx.doi.org/10.30863/educhild.v2i2.1315.
J. E. Chacón and T. Duong, Multivariate Kernel Smoothing and Its Applications. Taylor & Francis Group, 2018. doi: https://doi.org/10.1201/9780429485572.
L. Hörmander, The Analysis of Linear Partial Differential Operators I. New York: Springer, 2003. doi: http://dx.doi.org/10.1007/978-3-642-46175-0.
M. Isiler, M. Yanalak, M. E. Atik, S. O. Atik, and Z. Duran, “A Semi-Automated Two-Step Building Stock Monitoring Methodology for Supporting Immediate Solutions in Urban Issues,” Sustainability (Switzerland), vol. 15, no. 11, Jun. 2023, doi: https://doi.org/10.3390/su15118979.
L. P. Safitri Pratiwi, N. P. M. Ayuningsih, and I. M. P. P. Wijaya, “Perbandingan Metode CV dan GCV pada Pemodelan MARS (Aplikasi Rata-Rata Lama Sekolah di Kabupaten Gianyar),” SAINTIFIK, vol. 8, no. 2, pp. 114–122, Jul. 2022, doi: https://doi.org/10.31605/saintifik.v8i2.371.
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction To Time Series Analysis And Forecasting, 2nd ed. New Jersey: John Wiley &Sons, Inc, 2015.
DOI: https://doi.org/10.18860/cauchy.v10i1.27625
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Abdul Aziz

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.