Bias Correction of Lake Toba Rainfall Data Using Quantile Delta Mapping

Syukri Arif Rafhida, Sri Nurdiati, Retno Budiarti, Mohamad Khoirun Najib

Abstract


Lake Toba, located in North Sumatra, is the largest tectonic and volcanic lake in Indonesia. Lake Toba has an equatorial climate characterized by abundant rainfall throughout the year. High rainfall, coupled with annual increases due to climate change, results in a vulnerability to the unpredictable extreme weather, causing harm to the surrounding communities. Consequently, a rainfall prediction model is needed to anticipate the impacts of such extreme rainfall. One of the rainfall prediction models used is ERA5-Land. However, this prediction model has biases that can be avoided. A method that can be used is the statistical bias correction using the quantile delta mappings (QDM) by correcting ERA5-Land model data against BMKG observation data. The QDM method used in this study employs two types of methods: monthly and full distribution. The results shows that both methods can improve biases at Silaen, Laguboti, and Doloksanggul stations, as well as improve the model during the equatorial dry seasons in May, June, July, and August. However, the first method improves the model distribution more in Silaen and Laguboti, while the second method improves the model distribution more in Doloksanggul.

Keywords


Lake Toba; quantile delta mapping; rainfall

Full Text:

PDF

References


[1] C. A. Chesner, “The Toba Caldera Complex,” Quat. Int., vol. 258, pp. 5–18, 2012, doi: 10.1016/j.quaint.2011.09.025.

[2] B. Wagner et al., “Potential impact of the 74 ka Toba eruption on the Balkan region, SE Europe,” Clim. Past Discuss., vol. 9, no. 3, pp. 3307–3319, 2013, doi: 10.5194/cpd-9-3307-2013.

[3] R. Lukman, “Kajian Kondisi Morfometri Dan Beberapa Parameter Stratifikasi Perairan Danau Toba,” J. Limnotek, vol. 17, no. 2, pp. 158–170, 2010.

[4] H. Irwandi, M. S. Rosid, and T. Mart, “Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction,” Sci. Rep., vol. 13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-29592-y.

[5] M. Mamenun, H. Pawitan, and A. Sopaheluwakan, “Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia,” J. Meteorol. dan Geofis., vol. 15, no. 1, 2014, doi: 10.31172/jmg.v15i1.169.

[6] H. Hersbach et al., “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049, 2020, doi: 10.1002/qj.3803.

[7] M. K. Najib and S. Nurdiati, “Koreksi Bias Statistik Pada Data Prediksi Suhu Permukaan Air Laut Di Wilayah Indian Ocean Dipole Barat Dan Timur,” Jambura Geosci. Rev., vol. 3, no. 1, pp. 9–17, 2021, doi: 10.34312/jgeosrev.v3i1.8259.

[8] S. Nurdiati, A. Sopaheluwakan, and M. K. Najib, “Statistical Bias Correction for Predictions of Indian Ocean Dipole Index With Quantile Mapping Approach,” Int. MIPAnet Conf. Sci. Math., no. April 2021, 2019, doi: 10.31219/osf.io/7dq2j.

[9] X. Li and Z. Li, “Evaluation of bias correction techniques for generating highresolution daily temperature projections from CMIP6 models,” Clim. Dyn., vol. 61, no. 7–8, pp. 3893–3910, 2023, doi: 10.1007/s00382-023-06778-8.

[10] C. Teutschbein and J. Seibert, “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,” J. Hydrol., vol. 456–457, pp. 12–29, 2012, doi: 10.1016/j.jhydrol.2012.05.052.

[11] A. J. Cannon, “Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables,” Clim. Dyn., vol. 50, no. 1–2, pp. 31–49, 2018, doi: 10.1007/s00382-017- 3580-6.

[12] A. J. Cannon, S. R. Sobie, and T. Q. Murdock, “Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?,” J. Clim., vol. 28, no. 17, pp. 6938–6959, 2015, doi: 10.1175/JCLI-D-14-00754.1.

[13] B. Gumus, S. Oruc, I. Yucel, and M. T. Yilmaz, “Impacts of Climate Change on Extreme Climate Indices in Türkiye Driven by High-Resolution Downscaled CMIP6 Climate Models,” Sustain., vol. 15, no. 9, 2023, doi: 10.3390/su15097202.

[14] M. S. Reboita, G. W. de S. Ferreira, J. G. M. Ribeiro, R. P. da Rocha, and V. B. Rao, “South American Monsoon Lifecycle Projected by Statistical Downscaling with CMIP6-GCMs,” Atmosphere (Basel)., vol. 14, no. 9, p. 1380, 2023, doi: 10.3390/atmos14091380.

[15] S. Mohita Anand and S. Jai Bhagwan, “Use of Probability Distribution in Rainfall Analysis,” New York Sci. J., vol. 3, no. 9, pp. 40–49, 2010.

[16] C. Piani, J. O. Haerter, and E. Coppola, “Statistical bias correction for daily precipitation in regional climate models over Europe,” Theor. Appl. Climatol., vol. 99, no. 1–2, pp. 187–192, 2010, doi: 10.1007/s00704-009-0134-9.

[17] H. Li, J. Sheffield, and E. F. Wood, “Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching,” J. Geophys. Res. Atmos., vol. 115, no. 10, 2010, doi: 10.1029/2009JD012882.

[18] Tukidi, “Karakter Curah Hujan Di Indonesia,” J. Geogr., vol. 7, no. 2, pp. 136–145, 2010, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JG/article/view/84




DOI: https://doi.org/10.18860/ca.v9i2.29124

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Syukri Arif Rafhida, Sri Nurdiati, Retno Budiarti, Mohamad Khoirun Najib

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.