Solusi Numerik Persamaan Poisson Menggunakan Jaringan Fungsi Radial Basis pada Koordinat Polar
Abstract
Keywords
Full Text:
PDFReferences
W.E. Boyce, R.C. DiPrima, C.W. Haines, Elementary differential equations and boundary value problems, Wiley New York, 1992.
D.S. Broomhead, D. Lowe, Radial basis functions, multi-variable functional interpolation and adaptive networks, DTIC Document, 1988.
N. Mai-Duy, T. Tran-Cong, Approximation of function and its derivatives using radial basis function networks, Appl. Math. Model. 27 (2003) 197–220.
R.C. MITTAL, S. GaHLAUT, A BOUNDARY INTEGRAL FORMULATION FOR POISSON’S EQUATION IN POLAR COORDINATES, Indian J. Pure Appi. Math. 18 (1987) 965–972.
V. Olej, P. Hajek, Municipal creditworthiness modelling by radial basis function neural networks and sensitive analysis of their input parameters, in: Artif. Neural Networks–ICANN 2009, Springer, 2009: pp. 505–514.
W.A. Strauss, Partial differential equations: An introduction, New York. (1992).
D. Varberg, E.J. Purcell, Kalkulus dan Geometri Analitis Jilid 2, Jakarta Erlangga..(1999). Kalkulus Dan Geom. Anal. Jilid. 1 (1994).
DOI: https://doi.org/10.18860/ca.v3i4.2927
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Fatma Mufidah, Mohammad Jamhuri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.