Understanding The Mechanism of GLUT4 Translocation Involving Non-Conserved Complexes from A Modeling and Simulation T2DM Perspective
Abstract
Understanding the mechanism of Glucose Transporter 4 (GLUT4) translocation to the cell membrane is essential for describing daily glucose uptake. A normal mechanism maintains glucose homeostasis and reduces the occurrence of Type 2 Diabetes Mellitus (T2DM) and its complications. Kinetic reactions are crucial for revealing the interactions involving proteins, enzymes, and complexes within the system. We propose a system of ordinary differential equations (ODEs) to elucidate the underlying mechanism under the assumption of non-conservative complexes . The insulin signaling pathway, which includes the GLUT4 mechanism, serves as the basis for reconstructing the necessary kinetic reactions. Investigating the behaviour of the model through numerical simulations and dynamics within parameters and initial conditions from relevant researchs .
Keywords
Full Text:
PDFReferences
[1] U. Galicia-Garcia et al., “Pathophysiology of Type 2 Diabetes Mellitus,” Int. J. Mol. Sci., vol. 21, no. 17, p. 6275, Aug. 2020, doi: 10.3390/ijms21176275.
[2] T. Wang, J. Wang, X. Hu, X. Huang, and G.-X. Chen, “Current understanding of glucose transporter 4 expression and functional mechanisms,” World J. Biol. Chem., vol. 11, no. 3, pp. 76–98, Nov. 2020, doi: 10.4331/wjbc.v11.i3.76.
[3] Brian Ingalls, Mathematical Modelling in Systems Biology: An Introduction, 13th ed. The MIT Press Cambridge, Massachusetts, 2022.
[4] Gisela Wilcox, “Insulin and Insulin Resistance,” 2005.
[5] M. C. Petersen and G. I. Shulman, “Mechanisms of Insulin Action and Insulin Resistance,” Physiol. Rev., vol. 98, no. 4, pp. 2133–2223, Oct. 2018, doi: 10.1152/physrev.00063.2017.
[6] AL-Ishaq, Abotaleb, Kubatka, Kajo, and Büsselberg, “Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels,” Biomolecules, vol. 9, no. 9, p. 430, Sep. 2019, doi: 10.3390/biom9090430.
[7] A. L. Olson, “Regulation of GLUT4 and Insulin-Dependent Glucose Flux.,” ISRN Mol. Biol., vol. 2012, p. 856987, Oct. 2012, doi: 10.5402/2012/856987.
[8] M. Lombarte, M. Lupo, G. Campetelli, M. Basualdo, and A. Rigalli, “Mathematical model of glucose–insulin homeostasis in healthy rats,” Math. Biosci., vol. 245, no. 2, pp. 269–277, Oct. 2013, doi: 10.1016/j.mbs.2013.07.017.
[9] M. S. Ola, “Reduced Tyrosine and Serine-632 Phosphorylation of Insulin Receptor Substrate-1 in the Gastrocnemius Muscle of Obese Zucker Rat,” Curr. Issues Mol. Biol., vol. 44, no. 12, pp. 6015–6027, Nov. 2022, doi: 10.3390/cimb44120410.
[10] P. K. Robinson, “Enzymes: principles and biotechnological applications,” Essays Biochem., vol. 59, pp. 1–41, Nov. 2015, doi: 10.1042/bse0590001.
[11] J. Spychala, P. Spychala, S. Gomez, and G. E. Weinreb, “Visinets: A Web-Based Pathway Modeling and Dynamic Visualization Tool,” PLoS One, vol. 10, no. 5, p. e0123773, May 2015, doi: 10.1371/journal.pone.0123773.
[12] N. Sulaimanov, M. Klose, H. Busch, and M. Boerries, “Understanding the <scp>mTOR</scp> signaling pathway via mathematical modeling,” WIREs Syst. Biol. Med., vol. 9, no. 4, Jul. 2017, doi: 10.1002/wsbm.1379.
[13] Brian Ingalls, “Mathematical Modelling in Systems Biology: An Introduction,” 2012.
[14] Z. Jin, Y. Sato, M. Kawashima, and M. Kanehisa, “<scp>KEGG</scp> tools for classification and analysis of viral proteins,” Protein Sci., vol. 32, no. 12, Dec. 2023, doi: 10.1002/pro.4820.
[15] D. Szklarczyk et al., “The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible,” Nucleic Acids Res., vol. 45, no. D1, pp. D362–D368, Jan. 2017, doi: 10.1093/nar/gkw937.
[16] J. Boucher, A. Kleinridders, and C. R. Kahn, “Insulin Receptor Signaling in Normal and Insulin-Resistant States,” Cold Spring Harb. Perspect. Biol., vol. 6, no. 1, pp. a009191–a009191, Jan. 2014, doi: 10.1101/cshperspect.a009191.
[17] D. Szklarczyk et al., “The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets,” Nucleic Acids Res., vol. 49, no. D1, pp. D605–D612, Jan. 2021, doi: 10.1093/nar/gkaa1074.
[18] J. Keener and J. Sneyd, Eds., Mathematical Physiology, vol. 8/1. New York, NY: Springer New York, 2009. doi: 10.1007/978-0-387-75847-3.
[19] G. Schreiber, G. Haran, and H.-X. Zhou, “Fundamental Aspects of Protein−Protein Association Kinetics,” Chem. Rev., vol. 109, no. 3, pp. 839–860, Mar. 2009, doi: 10.1021/cr800373w.
[20] B. Di Camillo, A. Carlon, F. Eduati, and G. M. Toffolo, “A rule-based model of insulin signalling pathway,” BMC Syst. Biol., vol. 10, no. 1, p. 38, Dec. 2016, doi: 10.1186/s12918-016-0281-4.
DOI: https://doi.org/10.18860/cauchy.v10i1.29292
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ari Kusumastuti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.