Structural Equation Modeling Semiparametric Truncated Spline in Banking Credit Risk Behavior Models

Devi Veda Amanda, Atiek Iriany, Adji Achmad Rinaldo Fernandes, Solimun Solimun

Abstract


Housing is one of the primary needs for every individual. Along with the increasing population growth in Indonesia, the need for housing has also experienced a significant surge. This study aims to analyze the effect of customer attitudes on compliance behavior, fear of paying late, and timeliness of payment on Home Ownership Credit (KPR) customers at X Bank. Using a semiparametric Structural Equation Modeling (SEM) approach, this study examines the relationship between these variables to provide a deeper understanding of the factors that influence customer payment behavior. The data used in this study are primary data obtained through questionnaires distributed to 100 Bank X mortgage customers. The results of the analysis show that there is a significant influence between customer attitudes (X1) on obedient payment behavior (Y1) and fear of paying late (Y2), as well as timeliness of payment (Y3). The estimated coefficients obtained show a positive relationship between compliance behavior and timeliness of payment, and a negative relationship between fear of paying late and timeliness of payment, with a p-value <0.001 indicating statistical significance. This finding indicates that good customer attitudes can improve payment timeliness, while poor attitudes can lead to fear of paying late, which in turn can affect payment timeliness.


Keywords


Character; Timeliness of Payments; Credit Customers; Semiparametric SEM; Truncated Spline

Full Text:

PDF

References


[1] B. Hanafi, T. Anggraini, and N. Inayah, "Analisis Efektivitas Penyaluran Pembiayaan Kredit Pemilikan Rumah (KPR) Syariah Pada Perumahan Bersubsidi Dengan Akad Murabahah (Studi Kasus Bank Sumut KCP Syariah Kota Baru Marelan)," JPEK (Jurnal Pendidikan Ekonomi dan Kewirausahaan), vol. 8, pp. 678–688, 2024.

[2] F. Ubaidillah, A. A. R. Fernandes, A. Iriany, N. W. S. Wardhani, and Solimun, "Truncated Spline Path Analysis Modeling in Company X with the Government's Role as a Mediation Variable," Journal of Statistics Applications & Probability, vol. 3, pp. 781–794, 2022.

[3] Islamiyati and I. N. Budiantara, "Model Spline dengan Titik–Titik Knot dalam Regresi Nonparametrik," Jurnal Inferensi, vol. 3, pp. 11–21, 2007.

[4] Lestari and I. N. Budiantara, "Spline Estimator and Its Asymptotic Properties in Multiresponse Nonparametric Regression Model," Songklanakarin Journal of Science & Technology, vol. 42, no. 3, 2020.

[5] N. Budiantara, B. Lestari, and A. Islamiyati, Weighted Partial Spline Weighted Spline Estimators in Heteroscedastic Non-Parametric and Semiparametric Regression for Longitudinal Data. Surabaya: Institute for Research and Community Service, Sepuluh Nopember Institute of Technology, 2009.

[6] R. Fernandes, Estimator Spline dalam Regresi Nonparametrik Birespon untuk Data Longitudinal: Studi Kasus pada Pasien Penderita TB Paru di Malang. Surabaya: Institut Teknologi Sepuluh Nopember, 2016.

[7] Puspitasari, A. A. R. Fernandes, A. Efendi, S. Astutik, and E. Sumarminingsih, "Development of Nonparametric Truncated Spline at Various Levels of Autocorrelation of Longitudinal Generating Data," Journal of Statistics Applications and Probability. Available: https://doi.org/10.18576/jsap/120234.

[8] T. R. Syafriana, Solimun, N. W. S. Wardhani, A. Iriany, and A. A. R. Fernandes, "Development of Nonparametric Structural Equation Modeling on Simulation Data Using Exponential Functions," Mathematics and Statistics, vol. 11, no. 1, pp. 1–12, 2023.

[9] Solimun, A. A. R. Fernandes, and Nurjannah, Metode Statistika Multivariat: Pemodelan Persamaan Struktural (SEM). Malang: UB Press, 2017.

[10] F. Ubaidillah, Pengembangan Structural Equation Modelling Semiparametrik. Malang: Universitas Brawijaya, 2022.

[11] K. A. Bollen and M. D. Noble, "Structural Equation Models and the Quantification of Behavior," Proceedings of the National Academy of Sciences, vol. 108, no. 3, pp. 15639–15646, 2011.

[12] N. Budiantara, Regresi Spline Linier. Semarang: FMIPA Universitas Diponegoro, 2005.

[13] Fornell and D. F. Larcker, "Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics," Division of Research Journal, vol. 266, 1981.

[14] J. J. Hox and T. M. Bechger, "An Introduction to Structural Equation Modeling," Family Science Review, vol. 11, pp. 354–373, 1998.

[15] Solimun, Structural Equation Modeling Lisrel dan Amos. Malang: Universitas Brawijaya, 2002.

[16] A. R. Fernandes and Solimun, Analisis Regresi dalam Pendekatan Fleksibel. Malang: UB Press, 2021.




DOI: https://doi.org/10.18860/cauchy.v10i1.29769

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Devi Veda Amanda, Atiek Iriany, Adji Achmad Rinaldo Fernandes, Solimun Solimun

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.