Simulation Study and Development of Semiparametric Multiresponse Multigroup Truncated Spline Regression for Rice Pest Control

Laila Nur Azizah, Adji Achmad Rinaldo Fernandes, Ni Wayan Surya Wardhani

Abstract


Rice pest control is a critical challenge in the agricultural sector that requires a deep understanding of rice pest management. Regression analysis is a statistical method capable of describing and predicting cause-and-effect relationships between individuals. In real-life applications, not all relationships exhibit a known curve pattern, and non-identifiable curve forms are often observed. Additionally, a single cause may affect more than one outcome, and the outcomes themselves can have interrelationships. Such relationships can be approached through a multi-response semiparametric regression using a truncated spline multi-group model. This study aims to develop a multi-response semiparametric multi-group regression model using the truncated spline approach to understand the variables influencing rice pest control under light and dark conditions. This model is applied to secondary and simulated data with various scenarios to determine the best model. The study results indicate that the optimal model for secondary data is a semiparametric regression model with a linear order and a single knot point, achieving a determination coefficient of 89.17%. Simulation results show that the scenario 1 model (linear with a single knot point) produces a high determination coefficient. This multi-response regression model proves more optimal when error variance and multicollinearity levels are kept low to moderate.

Keywords


Multi-Group; Multi-Responses Semiparametric Regression; Rice Pest; Truncated Spline; Weighted Least Square

Full Text:

XML

References


[1] Fernandes, A.A.R. & Solimun. Analisis Regresi dalam Pendekatan Fleksibel. Universitas Brawijaya Press. 2022.

[2] Fernandes, A. A. R., Rahmawati, I., Muflikhah, L., Ubaidillah, F., & Al Rohimi, A. Research on Structural Flexibility and Acceptance Model (SFAM) Reconstruction Based on Disruption Innovation in the Social Humanities and Education Sector. WSEAS Transactions on Mathematics, 20, 657-675. 2021

[3] Dani, A. T. R., Adrianingsih, N. Y., Ainurrochmah, A., & Sriningsih, R. Flexibility of Nonparametric Regression Spline Truncated on Data without a Specific Pattern. Jurnal Litbang Edusaintech, 2(1), 37-43. 2021.

[4] Fernandes, A. A. R., Darmanto, Astuti, A. B., Solimun, Amaliana, L., Nurjannah, Yanti, I., Arisoesilaningsih, E., & Isaskar, R. Smoothing Spline Nonparametric Path: Application for Green Product and Green Marketing Strategy towards Green Product Purchasing Intention. IOP Conference Series: Earth and Environmental Science, 239, 012018. 2019.

[5] Schumaker, L. Spline Functions: Basic Theory. Cambridge University Press. 2007.

[6] Dani, A. T. R., & Ni’matuzzahroh, L. Penerapan Keluarga Model Spline Truncated Polinomial pada Regresi Nonparametrik. Inferensi, 5(1), 37-44. 2022.

[7] Härdle, W., & Liang, H. Partially Linear Models. In Handbook of Computational Statistics (pp. 707-737). Springer. 2007.

[8] Sari, A. Pengendalian Hama pada Tanaman Padi. Jurnal Pertanian, 10(2), 34-45. 2019.




DOI: https://doi.org/10.18860/cauchy.v10i1.29773

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Laila Nur Azizah, Adji Achmad Rinaldo Fernandes, Ni Wayan Surya Wardhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.