Development of Semiparametric Smoothing Spline Path Analysis on Cashless Society

Muhammad Rafi Hasan Nurdin, Muhammad Ohid Ullah, Adji Achmad Rinaldo Fernandes, Eni Sumarminingsih, Solimun Solimun

Abstract


Path analysis requires assumptions to be met, particularly the linearity assumption, which can be tested using the Ramsey Regression Specification Error Test (RESET). Parametric path analysis is appropriate when all variable relationships are linear. For entirely non-linear relationships, a nonparametric model can be used, while a semiparametric model applies if there is a mix of linear and non-linear relationships. One nonparametric method is spline smoothing, which requires determining the spline polynomial order in estimating the nonparametric path function. Determining the spline polynomial order is challenging because there is no standard test for it. This study thus develops a modified Ramsey RESET to identify the optimal spline smoothing order. The development involves modifying the second regression equation with a nonparametric spline smoothing regression of orders 2 to 5. The modified Ramsey RESET algorithm is applied to cashless data, and the results are used to estimate a multi-group semiparametric smoothing spline function with a dummy variable approach. This estimation yields a goodness of fit of 94.14%, indicating that Product Quality and the Moderating Effect of Cashless Usage Frequency can explain Cashless User Satisfaction and Cashless User Loyalty by 94.14%, with the remaining 5.86% explained by variables outside the research model

Keywords


Semiparametric Path; Smoothing Spline; Ramsey RESET

Full Text:

PDF

References


[1]

Sandjojo, N., Metode Analisis Jalur (Path Analysis) dan Aplikasinya, Pustaka Sinar Harapan, 2011.

[2]

Solimun., Fernandes, A. A. R., & Nurjannah, Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS, UB Press, 2017.

[3]

Hamid, M., Sufi, I., Konadi, W., & Yusrizal, A, Analisis Jalur Dan Aplikasi Spss Versi 25 Edisi Pertama. In Aceh. Kopelma Darussalam, 2017.

[4]

Solimun, & Fernandes, A. A. R., Innovation-Based Research Using Structural Flexibility and Acceptance Model (SFAM), Cogent Business and Management, vol. 10, no. 1, 2023.

[5]

Purnama, D. I., A Comparison between Nonparametric Approach: Smoothing Spline and B-Spline to Analyze The Total of Train Passangers in Sumatra Island, EKSAKTA: Journal of Sciences and Data Analysis, pp. 73–80, 2020.

[6]

Eubank, R. L., Nonparametric Regression and Spline Smoothing, CRC Press, 1999.

[7]

Takezawa, K., Introduction to Nonparametric Regression, Wiley, 2005.

[8]

Wahyuningsih, T. D., Handajani, S. S., & Indriati, D., Penerapan Generalized Cross Validation dalam Model Regresi Smoothing Spline pada Produksi Ubi Jalar di Jawa Tengah, Indonesian Journal of Applied Statistics, vol. 1, no. 2, pp. 117, 2019.

[9]

Salam, N., Sukmawaty, Y., & Halida, A., Estimasi Model Regresi Nonparametrik Dengan Metode B-Spline, Jurnal Sistem Media Bina Ilmiah, vol. 16, no. 10, pp. 7631–7638, 2022.

[10]

Fernandes, A. A. R., Hutahayan, B., Solimun, Arisoesilaningsih, E., Yanti, I., Astuti, A. B., Nurjannah, & Amaliana, L., Comparison of Curve Estimation of the Smoothing Spline Nonparametric Function Path Based on PLS and PWLS In Various Levels of Heteroscedasticity, IOP Conference Series: Materials Science and Engineering, vol. 546, no. 5, 052024, 2019.

[11]

Pratama, Y. M., Fernandes, A. A. R., Wardhani, N. W. S., & Hamdan, R., Nonparametric Smoothing Spline Approach in Examining Investor Interest Factors, JTAM (Jurnal Teori Dan Aplikasi Matematika), vol. 8, no. 2, pp. 425, 2024.

[12]

Kotler, P., & Keller, L. K., Marketing Management (15th ed.), Pearson Education, 2016.

[13]

Rahi, S., Yasin, N. M., & Alnaser, F. M., Measuring the Role of Website Design, Assurance, Customer Service, and Brand Image Towards Customer Loyalty and Intention to Adopt Internet Banking, Journal of Internet Banking and Commerce, vol. 22, no. 8, pp. 1–18, 2017.

[14]

Palilati, A. P., Umar, Z. A., & Niode, I. Y., Pengaruh Kualitas Produk Dan Kepercayaan Terhadap Loyalitas Konsumen Dengan Kepuasan Konsumen Sebagai Variabel Intervening. JURNAL ILMIAH MANAJEMEN DAN BISNIS, vol. 5, no. 2, pp. 534–542, 2022.

[15]

Fernandes, A. A. R., Solimun, & Arisoesilaningsih, E. Estimation of spline function in nonparametric path analysis based on penalized weighted least square (PWLS), 020030, 2017.

[16]

Fernandes, A. A. R., Budiantara, I. N., Otok, B. W., & Suhartono., Spline estimator for bi-responses nonparametric regression model for longitudinal data, Applied Mathematical Sciences, vol. 8, pp. 5653–5665, 2014.

[17]

Zebua, H. I., Pemodelan Kemiskinan di Sumatera Utara Menggunakan Regresi Nonparametrik Kernel dan Splines, Seminar Nasional Official Statistics, vol. 2021, no. 1, pp. 899–907, 2021.

[18]

Sayuti, A., Kusnandar, D., & Mara, M. N., Generalized Cross Validation Dalam Regresi Smoothing Spline, Buletin Ilmiah Mat. Stat. Dan Terapannya (Bimaster), vol. 02, no. 3, pp. 191–196, 2013.

[19]

Ramsey, J. B., Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis, Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 31, no. 2, 350–371, 1969.

[20]

Gujarati., Basic Econometrics, Fourth Edition. In The Economic Journal, Vol. 82, Issue 326, 2004.




DOI: https://doi.org/10.18860/cauchy.v10i1.29846

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Rafi Hasan Nurdin, Adji Achmad Rinaldo Fernandes, Eni Sumarminingsih, Muhammad Ohid Ullah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.