Analysis of Resolving Efficient Dominating Set and Its Application Scheme in Multi-Step Time Series Forecasting of pH and Soil Moisture in Horizontal Farming

Kamal Dliou, Adinda Putri Aziza, Dafik Dafik, Arika Indah Kristiana, Dwi Agustin Retnowardani

Abstract


This research focuses on the analyzing the Resolving Efficient Dominating Set (REDS) and its application scheme in horizontal farming using the Spatial Temporal Graph Neural Network (STGNN). Soil moisture and pH are crucial factors that affect the growth and yield, as they directly impact productivity and plant health. In cases where soil moisture and pH are lacking, various types of companion planting need to be watered. In such planting systems, a central role is needed to monitor soil moisture and pH levels effectively. The placement of operators in this system requires the application of mathematical concepts, specifically graph theory. In this study, we explore graph theory, particularly the Resolving Efficient Dominating Set. This involves ensuring that each vertex  is dominated by exactly one vertex in D, with no adjacent with another vertex, and the representation of vertex  concerning  is not the same. To effectively address this issue, including soil moisture and pH data, is required to predict future soil moisture and pH values in companion farming. Spatial Temporal Graph Neural Network (STGNN) technique proves to be useful in solving the problem of soil moisture and pH by understanding and modeling multi-step time series data. This technique aids in effectively managing and optimizing horizontal farming.

Keywords


efficient dominating set; companion farming; STGNN

Full Text:

PDF

References


Adawiyah, R., & Prihandini, R. M. (2021). Dimensi Metrikk Sisi pada Keluarga Graf Tangga. KadikmA, 12(1), 34-39.

Dafik, Agustin, I. H., Albirri, E. R., Alfarisi, R., & Prihandini, R. M. (2018). Locating Domination Number of m-Shadowing of Graphs. Journal of Phisics: Converence Series, 1-6.

Fujita, S., Liu, H., & Magnant C. (2003). Pearls in Graph Theory. Australia: Academic Press.

Gross, J. L., Yellen, J., & Zhang, P. (2014). Handbook of Graph Theory Second Edition. United States: CRS Press.

Hakim, R. A., Dafik, Tirta, I. M., & Prihandini, R. M. (2021). On Resolving Efficient Dominating Number of Comb Product of Special Graph. Journal of Phisics: Converence Series, 1-11.

Kusumawardani, I., Dafik, Kurniawati, E. Y., & Alfarisi, R. (2022). On Resolving Efficient Domination Number of Path and Comb Product of Special Graph. Journal of Phisics: Converence Series, 1-11.

Lim, B., & Zohren S. (2021). Time-series Forecasting with Deep Learning: a survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209.

Lipschutz, S., & Lipson, M. L. (2002). Seri Penyelesaian Soal Schaum: MatematikaDeskret 2. Jakarta: Salemba Teknika.

Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step time series forecasting of electric load using machine learning models. In Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, Proceedings, Part I 17, 148-159.

Munir, R. (2010). Matematika Diskrit. Bandung: Penerbit Informatika.

Retnowardani, D. A., Dafik, Agustin, I. H., Marsidi, & Putri, C. D. (2018). On the LIDS of corona product of graphs. AIP Conference Proceedings.

Robert, C. B., Orlando, Chartrand, G., Kalamazoo, R., Dutton, D., & Zhang, P. (2001). Resolving Domination in Graphs. Mathematica Bohemica, 12(8), 25-36.

Roifah, M., & Dafik. (2014). Kajian Himpunan Dominasi pada Graf Khusus dan Operasinya. Prosiding Seminar Matematika dan Pendidikan Matematika Universitas Jember, 191-196.

Scarselli, F., Gori, M., Taoi, A. C., Hagenbunchane, M., & Monfardini, G. (2020). The Graph Neural Network Model. IEEE Transaction on Neural Network, 20(1), 48-68.

Wangguway, Y., Dafik, Slamin, Retnowardani, D. A., & Alfarisi, R. (2020). On Resolving Domination Number of Special Family of Graphs. Journal of Physics: Converence Series, 1-16.

Wilson, R. J. (2020). Pengantar Teori Graf Edisi Kelima. Jakarta: Erlangga.

Windarto, A. P., Nasution, D., Wanto, A., Tambunan, F., Hasibuan, M. N., Siregar, H., et al. (2019). Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi. Journal of Chemical Information and Modeling, 53(9).




DOI: https://doi.org/10.18860/cauchy.v10i1.29960

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Kamal Ilham Dliou, Adinda Putri Aziza, Dafik Dafik, Arika Indah Kristiana, Dwi Agustin Retnowardani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.