Analyzing Household Expenditures with Generalized Random Forests
Abstract
Keywords
Full Text:
PDFReferences
[1]
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
[2]
Chaudhary, K., Alam, M., Al-Rakhami, M. S., & Gumaei, A. (2021). Machine learning-based mathematical modeling for prediction of social media consumer behavior using big data analytics. Journal of Big Data, 8(1), 1-20.
[3]
Conover, W. J. (1999). Practical Nonparametric Statistics (3rd ed.). Wiley.
[4]
Freedman, D. A. (2009). Statistical Models: Theory and Practice. Cambridge University Press.
[5]
Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized Random Forests. The Annals of Statistics, 47(2), 1148–1178.
[6]
Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests. Journal of the American Statistical Association, 113(523), 1228–1242.
[7]
Goldman, N. (2022). Nonparametric Estimation of Conditional Densities by Generalized Random Forests. Journal of Statistical Computation, 48(3), 121–145.
[8]
Zhang, Y., Li, H., & Ren, G. (2022). Estimating heterogeneous treatment effects in road safety analysis using generalized random forests. Accident Analysis & Prevention, 165, 106507.
[9]
Wang, M., & Yang, Q. (2022). The heterogeneous treatment effect of low-carbon city pilot policy on stock return: A generalized random forests approach. Finance Research Letters, 47(Part A), 102808.
[10]
Shiraishi, T. (2024). Time Series Quantile Regression Using Random Forests. Machine Learning Journal, 113(4), 789–805.
[11]
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
[12]
Setiawan, D., Wijayanto, H., & Abdul Rahman, L. O. (2022). Bagging and random forest classification methods for unbalanced data school dropout cases in Lampung province. AIP Conference Proceedings, 2662(1), 020026.
[13]
Amaliah, S., Nusrang, M., & Aswi. (2022). Penerapan metode Random Forest untuk klasifikasi varian minuman kopi di kedai kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(2), 121–127.
[14]
Ilma, H., Notodiputro, K. A., & Sartono, B. (2023). Association rules in random forest for the most interpretable model. Barekeng: Journal of Mathematics and Its Applications, 17(1), 185–196.
[15]
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.
[16]
Rusyana, A., Notodiputro, K. A., & Sartono, B. (2021). A generalized linear mixed model for understanding determinant factors of student's interest in pursuing bachelor's degree at Universitas Syiah Kuala. Jurnal Natural, 21(2), 193–205.
[17]
Sunandi, E., Notodiputro, K. A., & Sartono, B. (2022). A study of generalized linear mixed model for count data using hierarchical Bayes method. Media Statistika, 14(2), 194–205.
[18]
Belinda, N. S., Notodiputro, K. A., & Soleh, A. M. (2024). BHF and Copula Models in Small Area Estimation for Household Per Capita Expenditure in Bogor District. Jurnal Natural, 24(2). DOI: 10.24815/jn.v24i2.37278.
[19]
Chatterjee, S., & Hadi, A. S. (2015). Regression analysis by example (5th ed.). Wiley.
[20]
Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164. https://doi.org/10.1016/j.dajour.2023.100164
[21]
Ghosh, D., & Vogt, A. (2012). Outliers: An evaluation of methodologies. Joint Statistical Meetings, 12(1), 3455–3460.
[22]
Zubedi, F., Sartono, B., & Notodiputro, K. A. (2022). Implementation of winsorizing and random oversampling on data containing outliers and unbalanced data with the random forest classification method. Jurnal Natural, 22(2), 108–116. https://doi.org/10.24815/jn.v22i2.25499.
[23]
Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models (3rd ed.). Sage Publications
[24]
Wilcox, R. R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Academic Press.
[25]
Field, A. (2013). Discovering Statistics Using SPSS (4th ed.). Sage Publications
DOI: https://doi.org/10.18860/cauchy.v10i1.30104
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Eriski Isnanda, Khairil Anwar Notodiputro, Kusman Sadik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.