Integrating Path Analysis and Kendall’s Tau-based Principal Component Analysis to Identify Determinants of Child Health

Viky Iqbal Azizul Alim, Atiek Iriany, Adji Achmad Rinaldo Fernandes, Solimun Solimun, Candra Rezzining Wulat Sariro Weni Utomo

Abstract


This study develops a latent variable path analysis model using a Mixed-Scale Principal Component Analysis (PCA) approach based on Kendall’s Tau correlation to identify key determinants of child health in Batu City, Indonesia. Primary data were collected from 100 mothers with children under five years old through questionnaires. The variables examined include Family Demographics, Nutritional Consumption, and Child Health Condition, each measured using mixed-scale indicators (ordinal and numerical). Kendall’s Tau-based PCA was applied to reduce data dimensionality and construct latent variables, which were then integrated into a path analysis model. The results show that maternal age is the most dominant indicator in shaping the Family Demographics construct, while balanced nutritional food is the strongest indicator forming the Nutritional Consumption construct. Path analysis further reveals that Family Demographics significantly affect Child Health Condition both directly and indirectly through Nutritional Consumption, with a coefficient of determination of 77.62\%. These findings underscore the critical role of demographic and nutritional factors in determining child health outcomes and highlight the methodological advantage of Kendall’s Tau-based mixed-scale PCA for analyzing heterogeneous indicator data within a structural path framework.

Keywords


Child Health; Kendall’s Tau Correlation; Latent Variable Modeling; Mixed-Scale Principal Component Analysis; Path Analysis

Full Text:

PDF

References


[1] F. Murtagh and A. Heck. Multivariate Data Analysis. Vol. 131. Springer Science & Business Media, 2012. doi: 10.1007/978-94-009-3789-5.

[2] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. 6th ed. Upper Saddle River, NJ: Prentice Hall, 2007. Available online.

[3] U. Kruger, J. Zhang, and L. Xie. Developments and applications of nonlinear principal component analysis—a review. In: Principal Manifolds for Data Visualization and Dimension Reduction (2008), pp. 1–43. doi: 10.1007/978-3-540-73750-6_1.

[4] A. Gifi. Nonlinear Multivariate Analysis. Vol. 1. Chichester: Wiley, 1990. Available online.

[5] H. Yu, F. Khan, and V. Garaniya. An alternative formulation of PCA for process monitoring using distance correlation. Industrial & Engineering Chemistry Research, vol. 55, no. 3, pp. 656–669, Jan. 2016. doi: 10.1021/acs.iecr.5b03397.

[6] C. J. Guembou Shouop, M. Ndontchueng Moyo, E. J. Nguelem Mekongtso, O. Motapon, and D. Strivay. Application of energy dispersive X-ray fluorescence, γ-ray spectrometry and multivariate statistical approach for the classification of soil/sand from Douala – Cameroon. Radiation Physics and Chemistry, vol. 188, p. 109589, Nov. 2021. doi: 10.1016/j.radphyschem.2021.109589.

[7] R. Hizriyani. Pemberian ASI eksklusif sebagai pencegahan stunting. Jurnal Jendela Bunda, vol. 8, no. 2, pp. 55–62, 2021. doi: 10.32534/jjb.v8i2.1722. Available online.

[8] A. Arifuddin et al. Epidemiological model of stunting determinants in Indonesia. Healthy Tadulako Journal (Jurnal Kesehatan Tadulako), vol. 9, no. 2, pp. 224–234, 2023. doi: 10.22487/htj.v9i2.928.

[9] N. B. Brahmana, V. S. Manalu, D. Nababan, T. R. Sinaga, and F. L. Tarigan. Faktor-faktor yang berhubungan dengan kejadian stunting pada balita di Desa Marbun Tonga Marbun Dolok Kecamatan Baktiraja Kabupaten Humbang Hasundutan Tahun 2021. Journal of Healthcare Technology and Medicine, vol. 7, no. 2, pp. 1674–1690, 2022. Available online.

[10] R. Suherman and N. Nurhaidah. Analisis faktor determinan stunting di Desa Pesa Kecamatan Wawo Kabupaten Bima. Jurnal Manajemen Kesehatan Indonesia, vol. 8, no. 2, pp. 120–126, Aug. 2020. doi: 10.14710/jmki.8.2.2020.120-126.

[11] D. Zebrowska. Elimination of characteristics concerning the performance of open-ended equity funds using PCA. Statistics in Transition, vol. 24, no. 4, pp. 153–168, 2023. doi: 10.59170/stattrans-2023-057.

[12] E. Arisoesilaningsih, I. Serafinah, R. Rurini, and R. Adji Achmad. Pemodelan Pertumbuhan Umbi Amorphophallus onchophyllus pada Beberapa Agroforestri di Jawa Timur Menggunakan Program Smart PLS. Malang: Universitas Brawijaya, 2010. Available online.

[13] B. M. Byrne. Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, vol. 1, no. 1, pp. 55–86, 2001. doi: 10.1207/S15327574IJT0101_4.

[14] S. Astutik et al. Analisis Multivariat: Teori dan Aplikasinya dengan SAS. Malang: Universitas Brawijaya Press, 2018. Available online.

[15] C. C. Li. Path Analysis: A Primer. The Boxwood Press, 1975. Available online.




DOI: https://doi.org/10.18860/cauchy.v10i2.31156

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Viky Iqbal Azizul Alim, Atiek Iriany, Adji Achmad Rinaldo Fernandes, Solimun Solimun

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.