Optimization of Pertamax Fuel Distribution Using Clarke-Wright Savings, Nearest Neighbour, and Goal Programming (Case Study: Malang City)

Tharisa Melani, Sobri Abusini, Marjono Marjono

Abstract


Fuel distribution optimization is crucial to meet growing demand and reduce operational costs, especially in cities like Malang, where vehicle numbers are increasing. This research addresses the distribution challenges of PT Pertamina, focusing on designing efficient routes to minimize distance, cost, and delivery time while meeting fuel demands effectively. The problem, classified as a Capacitated Vehicle Routing Problem (CVRP), is solved using the Clarke-Wright Savings (CWS), Nearest Neighbour (NN), and Goal Programming (GP). The CWS is applied to group routes efficiently by reducing travel distances, while NN determined the delivery sequence within each route. GP addressed multi-objective optimization, minimizing costs and delivery time, maximizing Pertashop demands, and optimizing vehicle use. The results show that the combination of CWS and NN algorithms reduced the total travel distance by 140 km, or 12.5% reduction. Additionally, the GP method optimized vehicle use to 13, achieving a 59.68% cost reduction and a 48.68% time savings. These findings highlight the effectiveness of combining these algorithms in fuel distribution optimization, providing a more efficient solution compared to existing routes. Moreover, this approach is adaptable to similar logistics problems, offering a foundation for further research in multi-objective optimization for distribution systems.

Keywords


Clarke-Wright Savings; Distribution; Fuel Oil; Goal Programming; Nearest Neighbour

Full Text:

PDF

References


[1] F. Wahyuni, “Kualitas Pelayanan PT Pertamina Meulaboh Dalam Penyaluran Bahan Bakar Minyak (BBM) Di Meulaboh,” J. Akunt. Manaj. dan Ilmu Ekon., pp. 268–273, 2022.

[2] B. P. Statistik, “Jumlah Kendaraan Bermotor Menurut Provinsi dan Jenis Kendaraan (unit),” 2023. https://www.bps.go.id/id/statistics-table/3/VjJ3NGRGa3dkRk5MTlU1bVNFOTVVbmQyVURSTVFUMDkjMw==/jumlah-kendaraan-bermotor-menurut-provinsi-dan-jenis-kendaraan--unit---2023.html (accessed Jan. 10, 2025).

[3] K. ESDM, “Pertalite, BBM Yang Paling Banyak Dikonsumsi Masyarakat,” 2022. https://www.esdm.go.id/id/media-center/arsip-berita/pertalite-bbm-yang-paling-banyak-dikonsumsi-masyarakat (accessed Jan. 10, 2025).

[4] Kompas, “Nasib Pertamax Eceran, Selisih Seribu Rupiah Tapi Tetap Dibeli Mereka Yang Ogah Antre Di SPBU.” https://megapolitan.kompas.com/read/2022/04/07/15002261/nasib-pertamax-eceran-selisih-seribu-rupiah-tapi-tetap-dibeli-mereka-yang (accessed Jan. 10, 2025).

[5] S. Elatar, K. Abouelmehdi, and M. E. Riffi, “The Vehicle Routing Problem in The Last Decade: Variants, Taxonomy and Metaheuristics,” Procedia Comput. Sci., vol. 220, pp. 398–404, 2023, doi: 10.1016/j.procs.2023.03.051.

[6] M. S. Anggraeni, O. N. Tazkiya, E. Mawandi, and H. S. Amarilies, “Optimization of Fuel Distribution Routes for Green Logistics in Multi Compartment Vehicle Routing Problem (MCVRP) using Branch and Bound Algorithm (Case Study: Boyolali Fuel Terminal),” pp. 1132–1144, 2023, doi: 10.46254/an13.20230333.

[7] G. Clarke and J. W. Wright, “Scheduling of Vehicles from a Central Depot to a Number of Delivery Points,” Oper. Res., vol. 12, no. 4, pp. 568–581, 1964, doi: 10.1287/opre.12.4.568.

[8] J. Šedivý and J. Čejka, “Optimisation of distribution routes for branch office of česká pošta, s.p. (Czech Post),” Transp. Res. Procedia, vol. 53, no. 2019, pp. 252–257, 2021, doi: 10.1016/j.trpro.2021.02.032.

[9] S. Kunnapapdeelert and C. Thawnern, “Capacitated vehicle routing problem for thailand’s steel industry via saving algorithms,” J. Syst. Manag. Sci., vol. 11, no. 2, pp. 171–181, 2021, doi: 10.33168/JSMS.2021.0211.

[10] F. Tunnisaki and Sutarman, “Clarke and Wright Savings Algorithm as Solutions Vehicle Routing Problem with Simultaneous Pickup Delivery (VRPSPD),” J. Phys. Conf. Ser., vol. 2421, no. 1, 2023, doi: 10.1088/1742-6596/2421/1/012045.

[11] A. H. Taha, Operations Research An Introduction, 10th ed. London.

[12] R. Jia, Y. Liu, and X. Bai, “Sustainable supplier selection and order allocation: Distributionally robust goal programming model and tractable approximation,” Comput. Ind. Eng., vol. 140, no. January, p. 106267, 2020, doi: 10.1016/j.cie.2020.106267.

[13] E. E. Günay, G. E. Okudan Kremer, and A. Zarindast, “A multi-objective robust possibilistic programming approach to sustainable public transportation network design,” Fuzzy Sets Syst., vol. 422, pp. 106–129, 2021, doi: 10.1016/j.fss.2020.09.007.

[14] L. O. D. Munggaran and Z. F. Rosyada, “Pengoptimalan Pola Distribusi BBM Menggunakan Teori Transportasi Dan Metode Stepping Stone Pada PT. Pertamina Patra Niaga Regional Sumatera Bagian Selatan,” Ind. Eng. Online J., vol. 13, no. 4, 2024.

[15] G. Chartrand, L. Lesniak, and P. Zhang, Graphs & digraphs, 6th ed. New York: CRC Press, 2016.

[16] P. Toth and D. Vigo, The Vehicle Routing Problem. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2002.

[17] T. Carić and H. Gold, Vehicle Routing Problem. Croatia: In-Teh, 2008.

[18] G. B. Dantzig and J. T. Ramser, “The Truck Dispatching Problem,” Encycl. Oper. Res. Manag. Sci., vol. 6, no. 1, pp. 80–91, 1959, doi: 10.1007/978-1-4419-1153-7_200874.

[19] R. F. Harahap and Sawaluddin, “Study Vehicle Routing Problem Using Nearest Neighbor Algorithm,” J. Phys. Conf. Ser., vol. 2421, no. 1, 2023, doi: 10.1088/1742-6596/2421/1/012027.

[20] S. Mulyono, Riset Operasi. Jakarta: Mitra Wacana Media, 2017.




DOI: https://doi.org/10.18860/cauchy.v10i1.31529

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Tharisa Melani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.