Bayesian Geographically Weighted Generalized Poisson Regression Modeling on Maternal Mortality in NTT in 2022

Dewi Ratnasari Wijaya, Henny Pramoedyo, Ni Wayan Suryawardhani

Abstract


Maternal mortality is a crucial indicator of healthcare quality, particularly in East Nusa Tenggara (NTT) Province, which still records high mortality rates with significant spatial variation. This study aims to model maternal mortality in NTT in 2022 using the Bayesian Geographically Weighted Generalized Poisson Regression (BGWGPR) approach. This method integrates spatial weighting techniques with Bayesian parameter estimation through Gibbs Sampling to address spatial data characterized by overdispersion. Significant factors, including pregnant women's visits to healthcare facilities (K1), were found to influence the distribution of maternal deaths across districts in NTT. The model identifies that visits to healthcare facilities (K1) (X_1) are significant across all regions, while the variable for pregnant women receiving Tetanus Toxoid (X_3) is only significant in Alor and Timor Tengah Selatan. This model not only provides insights into determining factors but also helps identify priority areas for intervention. Therefore, this study contributes to evidence-based health policy-making aimed at reducing maternal mortality in NTT. The BGWGPR approach proves to be relevant for analyzing complex spatial data and can be applied to other epidemiological cases.

Keywords


bayesian; overdispersion; poisson; GWGPR; maternal mortality

Full Text:

PDF

References


[1] A. C. Cameron and P. K. Trivedi, “Essentials of Count Data Regression,” in A Companion to Theoretical Econometrics, 1st ed., B. H. Baltagi, Ed., Wiley, 2003, pp. 331–348. doi: 10.1002/9780470996249.ch16.

[2] W. Sabtika, A. Prahutama, and H. Yasin, “PEMODELAN GEOGRAPHICALLY WEIGHTED GENERALIZED POISSON REGRESSION (GWGPR) PADA KASUS KEMATIAN IBU NIFAS DI JAWA TENGAH,” J. Gaussian, vol. 10, no. 2, pp. 259–268, May 2021, doi: 10.14710/j.gauss.v10i2.30946.

[3] R. Cahyandari, “Pengujian Overdispersi pada Model Regresi Poisson,” vol. 14, no. 2, 2014.

[4] N. Sari, “Solusi Overdispersi Menggunakan Generalized Poisson Regression (Studi Kasus : Penderita HIV di Provinsi Riau),” vol. 4, no. 2, 2018.

[5] A. A. H. Aminullah and P. Purhadi, “Pemodelan untuk Jumlah Kasus Kematian Bayi dan Ibu di Jawa Timur Menggunakan Bivariate Generalized Poisson Regression,” J. Sains Dan Seni ITS, vol. 8, no. 2, pp. D72–D78, Jan. 2020, doi: 10.12962/j23373520.v8i2.44693.

[6] M. Chajewski, “MLE VS. BAYESIAN ITEM EXPOSURE IN NON-COGNITIVE TYPE ADAPTIVE ASSESSMENTS WITH RESTRICTED ITEM POOLS: TRAIT ESTIMATION, ITEM SELECTION AND RELIABILITY”.

[7] P. G. Widayaka and R. Rahmawati, “PENDEKATAN MIXED GEOGRAPHICALLY WEIGHTED REGRESSION UNTUK PEMODELAN PERTUMBUHAN EKONOMI MENURUT KABUPATEN/KOTA DI JAWA TENGAH”.

[8] Y. P. Putra, A. Aradea, and R. Rianto, “PEMODELAN BAYESIAN NETWORK UNTUK MENENTUKAN PROBABILITAS PENYEBAB PELANGGARAN DALAM PERTANDINGAN KARATE KUMITE,” Innov. Res. Inform. Innov., vol. 3, no. 2, Sep. 2021, doi: 10.37058/innovatics.v3i2.4341.

[9] N. Rejki, “BAYESIAN REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO (RJMCMC) UNTUK PEMODELAN MIXTURE SURVIVAL”.

[10] Yani, N. Y., Yanuar, F., & Yozza, H. (2018). Inferensi Bayesian untuk Sigma kuadrat dari Distribusi Normal dengan Berbagai Distribusi Prior. Jurnal Matematika UNAND, Vol. 7 No. 2.




DOI: https://doi.org/10.18860/cauchy.v10i2.31626

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dewi Ratnasari Wijaya, Henny Pramoedyo, Ni Wayan Suryawardhani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.