Health Insurance Claim Classification using Support Vector Machine with Velocity Pausing Particle Swarm Optimization
Abstract
classification is a serious problem. Identifying claim classification is difficult. Machine Learning (ML) can predict potential claim decisions. Support Vector Machine (SVM) is a ML model that can generalize well to test data. SVM achieves an -score of 73.39% and 89.88% with a linear kernel, 73.34% and 73.34% with Radial Basis Function (RBF) kernel. Particle Swarm Optimization (PSO) improves the performance, because it can find the best parameters for SVM. However, the SVM parameters found by PSO are not guaranteed to be the global optimum. Velocity Pausing PSO (VPPSO) can address this problem. SVM-VPPSO performs better compared with SVM and SVM-PSO. SVM-VPPSO with linear kernel achieves -score of 90.17%, 90.16%, and 90.06% with 10, 20, and 30 particles respectively. The linear kernel also performs better than RBF kernel with a difference of 0.39% on the testing data. The best configuration is SVM-Linear-VPPSO with 10 particles. This configuration also achieves computation time of 46.938 seconds, which faster than SVM-Linear-VPPSO with 20 particles. The variance in computational time with 10 particles is 1.832 seconds, which better than with 20 particles with variance of 37.909 seconds.
Keywords
Full Text:
PDFReferences
[1] C. Selisteanu, “The insurance contract - a support in the business sphere,” Perspectives of Business Law Journal, vol. 5, pp. 161-169, 2016.
[2] G. Netra, B. Rao, and P. Kengnal, “Utilization, satisfaction, out of pocket expenditure and health seeking behaviour among the insured residents of rural field area: A cross sectional study,” International Journal of Community Medicine and Public Health, vol. 7, pp. 1047-1050. 2020.
[3] M. M. Billah, Islamic insurance products, Palgrave Macmillan, Cham, pp. 47-63, 2019.
[4] N. Erinaputri, R. Yasin, S. Maghfiroh, and A. Febriyanti, “The level of community’s sense of importance in ownership of health insurance,” Jurnal Ilmu Kedokteran dan Kesehatan Indonesia, vol. 3, pp. 1-11. 2023.
[5] Otoritas Jasa Keuangan, Seri literasi keuangan perguruan tinggi: Perasuransian, 2016.
[6] Z. Rouaine, M. Jerry, and A. Qafas, “Automobile insurance: Analysis of the impact of a premium change on the behavior of insured at the time of subscription and termination,” Journal of Business and Economics, vol. 10, pp. 517-530, 2019.
[7] S. H. Rambe, Perlindungan hukum bagi tertanggung atas gagal klaim asuransi kesehatan akibat ketidaklengkapan data pemeriksaan kesehatan, Brawijaya University, Indonesia, 2019.
[8] S. H. Rambe and S. Paramitha, “Perlindungan hukum nasabah atas gagal klaim asuransi akibat ketidaktransparanan informasi polis asuransi,” Jurnal USM Law Review, vol. 5, pp. 93-109, 2022.
[9] M. Batubara, P. R. Silalahi, R. Fachrina, I. A. Putri, and F. Prayogi, “Analisis kasus gagal bayar klaim nasabah dalam perusahaan asuransi Jiwasraya,” Jurnal Kajian Ekonomi dan Bisnis Islam, vol. 3, pp. 633-640, 2022.
[10] J. Han, M. Kamber, and J. Pei, Data mining concepts and techniques, Morgan Kaufmann, Massachusetts, 2012.
[11] A. M. Walker, “Pattern recognition in health insurance claims databases,” Pharmacoepidemiology and Drug Safety, pp. 393-397, 2001.
[12] A. Harale, Y. Dubey, V. Gupta, A. Motghare, M. Chakole, and A. Pathade, “Empirical analysis of predictive models for insurance claim classification” Proceeding of International Conference on Emerging Trends in Engineering and Medical Sciences, pp. 333-336, 2022.
[13] A. Goh and S. Goh, “Support Vector Machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data,” Computers and Geotechnics, vol. 34, pp. 410-421. 2007.
[14] O. Devos, C. Ruckebusch, A. Durand, L. Duponchel, and J. Huvenne, “Support Vector Machines (SVM) in Near Infrared (NIR) Spectroscopy: Focus on parameters optimization and model interpretation,” Chemometrics and Intelligent Laboratory Systems, vol. 96, pp. 27-33, 2009.
[15] R. Safdari, P. Rezaei-Hachesu, M. GhaziSaeedi, T. Samad-Soltani, and M. Zolnoori, “Evaluation of classification algorithms vs knowledge-based methods for differential diagnosis of asthma in Iranian patients,” International Journal of Information Systems in the Service Sector, vol. 10, pp. 22-35, 2018.
[16] G. Liu, D. Zhou, H. Xu, and C. Mei, “Model optimization of SVM for a fermentation soft sensor,” Expert Systems with Applications, vol. 37, pp. 2708-2713, 2010.
[17] A. S. Nugroho, A. B. Witarto, and D. Handoko, Support Vector Machine teori dan aplikasinya, 2003.
[18] I. Steinwart, “On the influence of the kernel on the consistency of Support Vector Machines,” Journal of Machine Learning Research, vol. 2, pp. 67-93, 2002.
[19] Styawati, A. Nurkholis, Z. Abidin, and H. Sulistiani, “Optimasi parameter Support Vector Machine berbasis Algoritma Firefly pada data opini film,” Jurnal Rekayasa Sistem dan Teknologi Informasi, vol. 5, pp. 904-910, 2021.
[20] M. Jain, V. Saihjpal, N. Singh, and S. Singh, “An overview of variants and advancements of PSO algorithm,” Applied Sciences, vol. 12, 2022.
[21] Z. Gaing, “A Particle Swarm Optimization approach for optimum design of PID controller in AVR system,” IEEE Transactions on Energy Conversion, vol. 19, pp. 384-391, 2004.
[22] S. Lin, K. Ying, S. Chen, and Z. Lee, “Particle Swarm Optimization for parameter determination and feature selection of Support Vector Machines,” Expert Systems with Applications, vol. 35, pp. 1817-1824, 2008.
[23] S. Anam, M. R. A. Putra, Z. Fitriah, I. Yanti, N. Hidayat, and D. M. Mahanani, “Health claim insurance prediction using Support Vector Machine with Particle Swarm Optimization,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 17, pp. 797-806, 2023.
[24] B. Jana, S. Mitra, and S. Acharyya, “Repository and Mutation based Particle Swarm Optimization (RMPSO): A new PSO variant applied to reconstruction of gene regulatory network,” Applied Soft Computing, vol. 74, pp. 330-355, 2019.
[25] Z. Zhou, F. Li, J. Abawajy, and C. Gao, “Improved PSO algorithm integrated with opposition-based learning and tentative perception in networked data centres,” IEEE Access, vol. 8, pp. 55872-55880, 2020.
[26] S. A. Ardiyansa, N. C. Maharani, S. Anam, and E. Julianto, “Optimizing heart attack diagnosis using Random Forest with Bat Algorithm and greedy crossover technique,” BAREKENG: Journal of Mathematics and Its Applications, vol. 18, pp. 1053-1066, 2024.
[27] O. M. Neda and A. Ma'arif, “Chaotic Particle Swarm Optimization for solving reactive power optimization problem,” International Journal of Robotics and Control Systems, vol. 1, pp. 523-533, 2021.
[28] J. Kołodziejczyk and Y. Tarasenko, “Particle Swarm Optimization and L’evy flight integration," Procedia Computer Science, vol. 192, pp. 4658-4671, 2021.
[29] T. M. Shami, S. Mirjalili, Y. Al-Eryani, K. Daoudi, S. Izadi, and L. Abualigah, “Velocity Pausing Particle Swarm Optimization: A novel variant for global optimization,” Neural Computing and Applications, vol. 35, pp. 9193-9223, 2023.
[30] K. Tang and C. Meng, “Particle Swarm Optimization algorithm using velocity pausing and adaptive strategy,” Symmetry, vol. 16, 2024.
[31] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers”, Proceedings of the Fifth Annual Workshop on Computational Learning Theory (COLT '92), pp. 144-152, 1992.
[32] A. N. Guci, Pengembangan model klasifikasi penyakit daun tomat menggunakan hybird SNN-SVM classifier, Brawijaya University, Indonesia, 2023.
[33] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Procedings of the IEEE International Conference on Neural Netfworks, pp. 1942-1948, 1995.
DOI: https://doi.org/10.18860/cauchy.v10i2.31914
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Luh Putu Dharma Jayanti, Syaiful Anam, Safrizal Ardana Ardiyansa, Natasha Clarissa Maharani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






