b-Chromatic Number of Tree Graph Families

Rafiantika Megahnia Prihandini, Arika Indah Kristiana, Lusita Risma Dana, Edy Wihardjo, Robiatul Adawiyah, Hutkemri Zulnaidi

Abstract


Tree graph is a connected graph and has no circuits. Tree graphs used in this study include: broom graph, firework graph, banana tree graph, centipede graph, E graph, and double star graph. Graph coloring is the process of giving color to graph elements with the rule that neighboring elements must not have the same color and the number of colors used must be as minimal as possible. b-Coloring of a graph G is a coloring of the vertices of G such that each color class has at least one vertex adjacent to all other color classes. The b-Chromatic number of a graph G is denoted by φ (G), is the largest integer k such that G has a b-coloring with k colors. The limit of b-coloring of graph G with maximum degree ∆(G) is as follows. χ(G)≤φ(G)≤∆(G)+1.χ(G) is the chromatic number of a graph G where χ(G) is the minimum value of the color required for proper coloring of graph G. While ∆(G) is the maximum degree of the vertices in graph G. This study uses an exploratory research type with axiomatic deductive method and pattern detection method. Based on the results of this study, the results of the b-coloring analysis on the tree graph family are known. The results of this study are expected to be used as study material and development of scientific knowledge related to b-coloring of other graphs

Full Text:

PDF

References


  1. Maulana, A. Teori Graf. Tangerang Selatan: Unpam Press, 2023. ISBN: 978-623-5437-55-2. Available online. No DOI found; catalog record lists ISBN 978-623-5437-55-2. Accessed 2026-01-06.
  2. Baruah, Arun Kumar, and Niky Baruah. “Signal Groups of Compatible Graph in Traffic Control Problems.” International Journal of Advanced Networking and Applications 4, no. 1 (2012): 1473–1480. Available online. No DOI found; online issue page. Accessed 2026-01-06.
  3. Adawiyah, R., Dafik, R. Alfarisi, R. M. Prihandini, and I. H. Agustin. “Edge Metric Dimension on Some Families of Tree.” Journal of Physics: Conference Series 1180, no. 1 (March 2019): 012005. IOP Publishing. DOI: 10.1088/1742-6596/1180/1/012005.
  4. Irving, Robert W., and David F. Manlove. “The b-chromatic number of a graph.” Discrete Applied Mathematics 91, no. 3 (1999): 127–141. DOI: 10.1016/S0166-218X(98)00146-2.
  5. Kornelia, P., Noviani, and Fran. “Bilangan B-Kromatik pada Keluarga Graf Origami, Graf Lintang, dan Graf Tadpole.” Buletin Ilmiah Matematika, Statistika dan Terapannya 8, no. 4 (2019): 861–868. DOI: 10.26418/bbimst.v8i4.36551.
  6. Bonomo, Flavia, Guillermo Durán, Frédéric Maffray, Julieta Marenco, and Mario Valencia-Pabon. “On the b-coloring of cographs and P4-sparse graphs.” Graphs and Combinatorics 25, no. 2 (2009): 153–167. DOI: 10.1007/s00373-008-0829-1.
  7. Alfarisi, Ridho, Sharifah Kartini Said Husain, Arika Indah Kristiana, and Witriany Basri. “On b-Coloring of Unicyclic and Bicyclic Graphs.” Journal of Quality Measurement and Analysis 21, no. 4 (2025): 135–143. DOI: 10.17576/jqma.2104.2025.08.
  8. Kristiana, Arika Indah, M. G. Halim, and Robiatul Adawiyah. “Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Keluarga Graf Unicyclic.” Contemporary Mathematics and Applications (ConMathA) 4, no. 1 (2022): 15–27. DOI: 10.20473/conmatha.v4i1.33607.
  9. Lestari, D. D. A., Arika Indah Kristiana, R. M. Prihandini, Ridho Alfarisi, T. B. Setiawan, and Robiatul Adawiyah. “Bilangan Kromatik Graceful pada Keluarga Graf Sentripetal.” Jurnal Diferensial 6, no. 1 (February 2024): 57–64. DOI: 10.35508/jd.v6i1.12746.
  10. Az-Zahra, Nabilah Ayu, Dafik, and R. M. Prihandini. “Resolving Dominating Set pada Graf Bunga dan Graf Roda.” CGANT Journal of Mathematics and Applications 4, no. 1 (2023). DOI: 10.25037/cgantjma.v4i1.89.
  11. Adawiyah, R., and Darmaji. Penentuan Bilangan Dominasi Sisi pada Graf Hasil Operasi Produk Tensor. Master’s thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2016. Available online. No DOI; repository item page. Accessed 2026-01-06.
  12. Magfiroh, A. Z., Dafik, Arika Indah Kristiana, I. H. Agustin, I. N. Maylisa, and I. L. Mursyidah. “On b-Coloring of Some Graphs.” In Proceedings of the 2nd International Conference on Neural Networks and Machine Learning 2023 (ICNNML 2023), edited by I. H. Agustin, Advances in Intelligent Systems Research 183 (2024): 145–154. Atlantis Press. DOI: 10.2991/978-94-6463-445-7_15.
  13. Rahadi, A. P. “Penjadwalan Mata Kuliah Menggunakan Pewarnaan Graf dengan Algoritma Largest First.” Jurnal Padegogik 2, no. 1 (2019): 1–13. DOI: 10.35974/jpd.v2i1.1067. [Online]. Available: www.graphonline.ru
  14. Kouider, Mekkia, and Maryvonne Mahéo. “Some bounds for the b-chromatic number of a graph.” Discrete Mathematics 256, no. 1 (2002): 267–277. DOI: 10.1016/S0012-365X(01)00469-1.
  15. Kratochvíl, Jan, Zsolt Tuza, and Margit Voigt. “On the b-chromatic number of graphs.” In Graph-Theoretic Concepts in Computer Science (WG 2002), Lecture Notes in Computer Science 2573 (2002): 310–320. Berlin, Heidelberg: Springer. DOI: 10.1007/3-540-36379-3_27.




DOI: https://doi.org/10.18860/cauchy.v11i1.32328

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Arika Indah Kristiana, Rafiantika Megahnia Prihandini, Lusita Risma Dana, Edy Wihardjo, Robiatul Adawiyah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.