Comparing Multivariate Adaptive Regression Splines and Machine Learning Methods for Classifying Pneumonia in Indonesian Toddlers

Ardi Kurniawan, Nur Azizah, Sheila Sevira Asteriska Naura

Abstract


Pneumonia is a type of infectious and contagious respiratory disease that causes death in toddlers. According to the Indonesian Ministry of Health (2024), the coverage of pneumonia among toddlers in 2023 was 36.95% with a total of 416,435 cases. This study aims to model and classify the pneumonia status of toddlers in Indonesia using the Multivariate Adaptive Regression Splines (MARS) method and several machine learning methods, such as logistic regression, K-NN, random forest, and SVM. This study uses secondary data from the Survei Kesehatan Indonesia in 2023 and the Profil Kesehatan Indonesia in 2023, including variables such as the percentage of toddlers health service coverage, low birth weight babies, population density, percentage of malnutrition in toddlers, prevalence of smoking in the population aged ≥10 years in the last 1 month, percentage of toddlers who are exclusively breastfed, and percentage of toddlers who have incomplete basic immunization. The best model obtained using the MARS method is with BF = 14, MI = 2, and MO = 3. This model produces a GCV value of 0.122 and R-Square of 82.9%, which shows good prediction performance. The classification results show that the MARS method is superior to the logistic regression, K-NN, random forest, and SVM methods with an accuracy rate of 97.06%.

Keywords


Classification Accuracy; Machine Learning; MARS; Pneumonia; Toddlers

Full Text:

PDF

References


[1] Kemenkes RI, Profil Kesehatan Indonesia 2023, Jakarta: Kementerian Kesehatan Republik Indonesia, 2024.

[2] BKPK Kemenkes, "Survei Kesehatan Indonesia (SKI) 2023," 2023. [Online].

[3] Kemenkes Ditjen P2, "Pneumonia Menjadi Ancaman Kesakitan dan Kematian di Dunia," 2024. [Online]. Available: https://p2p.kemkes.go.id/pneumonia-menjadi-ancaman-kesakitan-dan-kematian-di-dunia/. [Accessed 26 Februari 2024].

[4] Kemenkes RI, PEDOMAN Sistem Kewaspadaan Dini dan Respon (SKDR) Penyakit Potensial KLB / Wabah, Jakarta: Kementerian Kesehatan RI, 2023.

[5] Y. L. Kang, Q. X. Zheng, X. Q. Chen and F. Zheng, "Effects of Exclusive Breastfeeding Duration on Pneumonia Occurrence and Course in Infants Up to 6 Months of Age: A Case-Control Study," Journal of Community Health Nursing, vol. 41, no. 4, pp. 256-264, 2024.

[6] V. N. Sutriana, M. N. Sitaresmi and A. Wahab, "Risk Factors of Childhood Pneumonia: a Case-Control Study in a High Prevalence Area in Indonesia," Clin Exp Pediatr, vol. 64, no. 11, pp. 588-595, 2021.

[7] H. Shi, T. Wang, Z. Zhao, D. Norback, X. Wang, Y. Li, Q. Deng, C. Lu, X. Zhang, X. Zheng, H. Qian, L. Zhang, W. Yu, Y. Shi, T. Chen, H. Yu, H. Qi, Y. Yang, L. Jiang, Y. Lin, J. Yao, J. Lu and Q. Yan, "Prevalence, Risk Factors, Impact and Management of Pneumonia Among Preschool Children in Chinese Seven Cities: A Cross-Sectional Study with Interrupted Time Series Analysis," BMC Medicine, vol. 21, no. 227, pp. 1-14, 2023.

[8] U. Yuliniar, Y. Wijayanti and D. R. Indriyanti, "An Analysis Factors Affecting the Cases of Pneumonia in Toddlers at Public Health Center (Puskesmas) Pati I," Public Health Perspective Journal, vol. 6, no. 3, pp. 254-261, 2021.

[9] G. S. Prihant, K. C. Widati, P. T. Yovi, A. Z. Dewi, W. Kirtanti, A. M. I. Restu, S. E. Elvaretta, A. A. Susilo, P. T. J. Audiawiyanti, Friska and A. Putri, "The Effect of House Environmental Factors on the Incidence of Pneumonia in Toddlers," KnE Medicine, vol. 2, no. 3, pp. 296-306, 2022.

[10] C. C. Chang, J. H. Yeh, H. C. Chiu, T. C. Liu, Y. M. Chen, M. J. Jhou and C. J. Lu, "Assessing the Length of Hospital Stay for Patients with Myasthenia Gravis Based on the Data Mining MARS Approach," Frontiers in Neurology, vol. 14, p. 1283214, 2023.

[11] M. S. Abed, F. J. Kadhim, J. K. Almusawi, H. Imran, L. F. A. Bernardo and S. N. Henedy, "Utilizing Multivariate Adaptive Regression Splines (MARS) for Precise Estimation of Soil Compaction Parameters," Applied Sciences, vol. 13, no. 11634, pp. 1-21, 2023.

[12] A. Özmen, Y. Zinchenko and G. W. Weber, "Robust multivariate adaptive regression splines under cross-polytope uncertainty: an application in a natural gas market.," Annals of Operations Research, vol. 324, pp. 1337-1367, 2024.

[13] M. B. Adiguzel and M. A. Cengiz, "Model Selection in Multivariate Adaptive Regressions Splines (MARS) Using Alternative Information Criteria," Heliyon, vol. 9, no. 9, p. 19964, 2023.

[14] M. A. Sahraei, H. Duman, M. Y. Codur and E. Eyduran, "Prediction of Transportation Energy Demand: Multivariate Adaptive Regression Splines," Energy, vol. 224, no. 12, p. 120090, 2021.

[15] Mahfudhotin, "Pemodelan Penyakit Infeksi Saluran Pernafasan Akut di Daerah Sekitar Semburan Lumpur Lapindo Sidoarjo dengan Pendekatan Model Multivariate Adaptive Regression Spline," JAMBURA: Journal of Probability and Statistics, vol. 3, no. 2, pp. 86-96, 2022.

[16] H. Lee and H.-S. Kim, "Logistic Regression and Least Absolute Shrinkage and Selection Operator," Cardiovascular Prevention and Pharmacotherapy, vol. 2, no. 4, pp. 142-146, 2020.

[17] E. Matasina, "Penerapan Regresi Logistik untuk Kasus Infeksi Saluran Pernafasan Akut (ISPA) pada Balita," Jurnal Diferensial, vol. 2, no. 1, pp. 56-66, 2020.

[18] M. Bansal, A. Goyal and A. Choudhary, "A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning," Decision Analytics Journal, vol. 3, 2022.

[19] N. S. Thomas and S. Kaliraj, "An Improved and Optimized Random Forest Based Approach to Predict the Software Faults," SN Computer Science, vol. 5, no. 530, 2024.

[20] W. Apriliah, I. Kurniawan, M. Baydhowi and T. Haryati, "Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest," SISTEMASI: Jurnal Sistem Infromasi, vol. 10, no. 1, pp. 163-171, 2021.

[21] F. Riandari, H. T. Sihotang, T. Tarigan and M. Rafli, "Classification of Book Types Using the Support Vector Machine (SVM) Method," Jurnal Mantik, vol. 6, no. 1, pp. 43-49, 2022.

[22] A. Achmad, Adnan and M. Rijal, "Klasifikasi Penyakit Pernapasan Berbasis Visualisasi Suara Menggunakan Metode Support Vector Machine," Jurnal Ilmiah Ilmu Komputer, vol. 8, no. 2, p. 119, 2022.

[23] J. H. Friedman, Multivariate Adaptive Regression Splines, vol. 19, The Annals of Statistics, 1991, pp. 1-67.

[24] D. Rahma, N. Amalita, Y. Kurniawati and Z. Martha, "Application of Multivariate Adaptive Regression Splines for Modeling Stunting Toddler on The Island of Java," UNP Journal of Statistics and Data Science, vol. 2, no. 3, pp. 338-343, 2024.

[25] R. Nurhidayat and K. E. Dewe, "Penerapan Algoritma K-Nearest Neighbor dan Fitur Ekstraksi N-Gram dalam Analisis Sentimen Berbasis Aspek," KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, pp. 91-100, 2023.

[26] A. Indriani, "Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier," in Seminar Nasional Aplikasi Teknologi Informasi (SNATI), Yogyakarta, 2014.

[27] S. Ridho and D. Rusda, "Analisis Preferensi Konsumen dalam Memilih Produk Hortikultura Menggunakan Metode Algoritma C45 dan Naive Bayes," Emitor, vol. 24, no. 1, pp. 66-77, 2024.

[28] S. Sanjaya, M. L. Pura, S. K. Gusti, F. Yanto and F. Syafria, "K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors," Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol. 2, no. 2, pp. 101-106, 2019.

[29] U. Ulfitasari, A. Yonita, S. Siswanto and A. Kalondeng, "Pemodelan Indeks Kebahagiaan Negara dengan Metode Multivariate Adaptive Regression Spline," MATHunesa: Jurnal Ilmiah Matematika, vol. 13, no. 1, pp. 209-216, 2025.




DOI: https://doi.org/10.18860/cauchy.v10i1.32418

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ardi Kurniawan, Nur Azizah, Sheila Sevira Asteriska Naura

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.