Time-varying Distribution Analysis for Rainfall and Air Temperature Data in Jakarta in Response to Future Climate Change

Suci Nur Setyawati, Sri Nurdiati, I Wayan Mangku, Mohamad Khoirun Najib

Abstract


Abstract

Indonesia is vulnerable to climate change (rainfall and air temperature), which can increase the chances of climatic disasters. An organized risk analysis is a strategic plan to minimize the impact. The purpose of this research is to estimate time-varying distribution parameters for normal, generalized extreme value (GEV), and lognormal distributions using fminsearch and MLE algorithms on rainfall and air temperature data in Jakarta, as well as visualize and analyze the best time-varying distribution. The maximum likelihood estimation (MLE) method is used for stationary distribution parameter estimation. The fminsearch algorithm is used for stationary and nonstationary distribution parameter estimation. The highest difference value of stationary distribution parameter results from both methods is 5.3768 mm for rainfall data and 0.2670°C for air temperature data. The results of the best distribution based on the AIC value are the 3-parameter lognormal distribution for rainfall data and the 4-parameter GEV distribution for air temperature data. Over time, the variance of rainfall increases, and the average air temperature increases with a fixed variance.


Keywords


air temperature; fmin-search algorithm; maximum likelihood estimation; parameter estimation; rainfall

Full Text:

PDF

References


[1] T. A. Carleton and S. M. Hsiang, “Social and economic impacts of climate,” Science (80-. )., vol. 353, no. 6304, 2016, doi: 10.1126/science.aad9837.

[2] M. Ariska, H. Akhsan, M. Muslim, M. Romadoni, and F. S. Putriyani, “Prediksi Perubahan Iklim Ekstrem di Kota Palembang dan Kaitannya dengan Fenomena El Niño-Southern Oscillation (ENSO) Berbasis Machine Learning,” JIPFRI (Jurnal Inov. Pendidik. Fis. dan Ris. Ilmiah), vol. 6, no. 2, pp. 79–86, 2022.

[3] R. Oelviani et al., “Climate Change Driving Salinity: An Overview of Vulnerabilities, Adaptations, and Challenges for Indonesian Agriculture,” Weather. Clim. Soc., vol. 16, no. 1, pp. 29–49, 2024, doi: 10.1175/WCAS-D-23-0025.1.

[4] M. D. & Y. T. Parmesan; C.; Morecroft, Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pötner, H, no. August. 2022. doi: 10.1017/9781009325844.CITATIONS.

[5] H. P. Rahayu, R. Haigh, D. Amaratunga, B. Kombaitan, D. Khoirunnisa, and V. Pradana, “A micro scale study of climate change adaptation and disaster risk reduction in coastal urban strategic planning for the Jakarta,” Int. J. Disaster Resil. Built Environ., vol. 11, no. 1, pp. 119–133, 2020, doi: 10.1108/IJDRBE-10-2019-0073.

[6] P. Xu et al., “Time-varying copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events,” J. Hydrol., vol. 603, no. PA, p. 126792, 2021, doi: 10.1016/j.jhydrol.2021.126792.

[7] H. Chen and J. Sun, “Contribution of human influence to increased daily precipitation extremes over China,” Geophys. Res. Lett., vol. 44, no. 5, pp. 2436–2444, 2017, doi: 10.1002/2016GL072439.

[8] B. C. Call, P. Belmont, J. C. Schmidt, and P. R. Wilcock, “Changes in floodplain inundation under nonstationary hydrology for an adjustable, alluvial river channel,” Water Resour. Res., vol. 53, no. 5, pp. 3811–3834, 2017, doi: 10.1002/2016WR020277.

[9] M. Ghanbari, M. Arabi, J. Obeysekera, and W. Sweet, “A Coherent Statistical Model for Coastal Flood Frequency Analysis Under Nonstationary Sea Level Conditions,” Earth’s Futur., vol. 7, no. 2, pp. 162–177, 2019, doi: 10.1029/2018EF001089.

[10] Q. Zhang, X. Gu, V. P. Singh, and X. Chen, “Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations,” J. Hydrol., vol. 529, no. P3, pp. 711–722, 2015, doi: 10.1016/j.jhydrol.2015.08.066.

[11] P. Ganguli and P. Coulibaly, “Does nonstationarity in rainfall require nonstationary intensity-duration-frequency curves?,” Hydrol. Earth Syst. Sci., vol. 21, no. 12, pp. 6461–6483, 2017, doi: 10.5194/hess-21-6461-2017.

[12] V. Agilan and N. V. Umamahesh, “Covariate and parameter uncertainty in non-stationary rainfall IDF curve,” Int. J. Climatol., vol. 38, no. 1, pp. 365–383, 2018, doi: 10.1002/joc.5181.

[13] L. Yan, L. Li, P. Yan, H. He, J. Li, and D. Lu, “Nonstationary flood hazard analysis in response to climate change and population growth,” Water (Switzerland), vol. 11, no. 9, pp. 1–20, 2019, doi: 10.3390/w11091811.

[14] Q. Tian, Z. Li, and X. Sun, “Frequency analysis of precipitation extremes under a changing climate: A case study in heihe river basin, china,” J. Water Clim. Chang., vol. 12, no. 3, pp. 772–786, 2021, doi: 10.2166/wcc.2020.170.

[15] M. Yılmaz and F. Tosunoğlu, “Non-stationary low flow frequency analysis under climate change,” Theor. Appl. Climatol., vol. 155, no. 8, pp. 7479–7497, 2024, doi: 10.1007/s00704-024-05081-8.

[16] D. Rahmayani and S. Sutikno, “Analisis Curah Hujan Ekstrim Non-Stasioner dengan Pendekatan Block Maxima di Surabaya dan Mojokerto,” J. Sains dan Seni ITS, vol. 8, no. 2, 2020, doi: 10.12962/j23373520.v8i2.44133.

[17] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “Multivariate fire risk models using copula regression in Kalimantan, Indonesia,” Nat. Hazards, vol. 113, no. 2, pp. 1263–1283, 2022, doi: 10.1007/s11069-022-05346-3.

[18] S. Nurdiati, M. K. Najib, and M. Z. Bayu, “Analisis Pembentukan Sebaran Bivariat Berbasis Copula Antara Luas Area Terbakar dan Curah Hujan di Sumatra Bagian Selatan,” J. Mat. Integr., vol. 18, no. 2, p. 217, 2022, doi: 10.24198/jmi.v18.n2.42024.217-227.

[19] R. A. Fisher, “On an absolute criterion for fitting frequency curves,” Stat. Sci., vol. 12, no. 1, pp. 39–41, 1997.

[20] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, 1998, doi: 10.1137/S1052623496303470.

[21] A. A. Grasa, Econometric Model Selection: A New Approach. Kluwer Academic Publishers, 1989.




DOI: https://doi.org/10.18860/cauchy.v10i2.32780

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Suci Nur Setyawati, Sri Nurdiati, I Wayan Mangku, Mohamad Khoirun Najib

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.