Comparing Newton Raphson and Stochastic Gradient Descent Methods for Traffic Accident in Malang

Aldi Rahmad Nur Fauzi, Sobri Abusini, Corina Karim

Abstract


This study discusses a comparison between two optimization methods, Newton–Raphson and Stochastic Gradient Descent (SGD), in binary logistic regression modeling to analyze the severity of traffic accidents in Malang Regency. Parameter estimation was carried out using both methods to assess their effectiveness in achieving convergence and producing a well-fitted model. The results show that the Newton–Raphson method failed to achieve convergence despite its fast iteration speed, while the SGD method successfully converged, although it required a large number of iterations. Model evaluation was conducted by examining model fit through log-likelihood values and the Akaike Information Criterion (AIC). The results indicate that the SGD method produced a better-fitting model compared to Newton–Raphson. Additionally, the regression models from each method identified different predictor variables as significant, suggesting that the choice of optimization approach can influence analytical outcomes. These findings highlight the importance of selecting an appropriate optimization method in logistic regression analysis, particularly for complex and imbalanced accident data.

Keywords


Traffic Accident, Binary logistics regression, maximum likelihood, Newton-Raphson, Stochastic Gradient Descent

Full Text:

PDF

References


[1] D. Namiot, O. Pokusaev, and A. Chekmarev, “Transportation data as a source for identifying social
clusters in the city,” Transportation Research Procedia, vol. 664-669, 2022. DOI: 10.1016/j.
trpro.2022.06.060.

[2] B. P. S. K. Malang, Kabupaten Malang dalam Angka Malang Regency in Figure. Badan Pusat
Statistik Kabupaten Malang, 2024.

[3] J. L. A. Oliveira, A. L. Aquino, R. G. Pinheiro, and B. Nogueira, “Optimizing public transport
system using biased random-key genetic algorithm,” Applied Soft Computing, vol. 158, 2024.
DOI: 10.1016/j.asoc.2024.111578.

[4] H. Yu, Z. Li, G. Zhang, P. Liu, and T. Ma, “Fusion convolutional neural network-based interpre-
tation of unobserved heterogeneous factors in driver injury severity outcomes in single-vehicle
crashes,” Analytic Methods in Accident Research, vol. 30, 2021. DOI: 10 . 1016 / j . amar .
2021.100157.

[5] P. R. Indonesia, Peraturan Pemerintah (PP) Nomor 34 Tahun 2006 tentang Jalan. Badan Pe-
meriksa Keuangan, 2006.

[6] M. Deublein, M. Schubert, B. T. Adey, J. Köhler, and M. H. Faber, “Prediction of road accidents:
A bayesian hierarchical approach,” Accident Analysis Prevention, vol. 51, pp. 274–291, 2013.
DOI: 10.1016/j.aap.2012.11.019.

[7] N. A. Stanton and P. M. Salmon, “Keterkaitan jalur transportasi dan interaksi ekonomi kabupaten
konawe utara dengan kabupaten/kota sekitarnya,” Safety Science, vol. 47, pp. 227–237, 2009. DOI:
doi.org/10.1016/j.ssci.2008.03.006.

[8] H. Ding, Y. Lu, N. Sze, C. Antoniou, and Y. Guo, “A crash feature-based allocation method for
boundary crash problem in spatial analysis of bicycle crashes,” Analytic Methods in Accident
Research, vol. 37, 2023. DOI: 10.1016/j.amar.2022.100251.

[9] J. Nugraha, Metode Maksimum Likelihood dalam Model Pemilihan Diskrit. Universitas Islam In-
donesia, 2017.

[10] Z. Li, Y. Ci, C. Chen, et al., “Investigation of driver injury severities in rural single-vehicle crashes
under rain conditions using mixed logit and latent class models,” Accident Analysis Prevention,
vol. 124, pp. 219–229, 2019. DOI: 10.1016/j.aap.2018.12.020.

[11] A. Alogaili and F. Mannerin, “Differences between day and night pedestrian-injury severities:
Accounting for temporal and unobserved effects in prediction,” Analytic Methods in Accident
Research, vol. 33, 2022. DOI: 10.1016/j.amar.2021.100201.

[12] W. Kriswardhana, S. Sulistyono, I. E. Muhammadiyah, et al., “Modeling the probability of speed-
ing behaviour and accident involvement using binary logistic regression in east java province,”
Journal of Indonesia Road Safety, vol. 2, pp. 149–158, 2019. DOI: 10.19184/korlantas-
jirs.v2i3.15048.

[13] L. O. M. Saris, H. Pramoedyo, and A. A. R. Fernandes, “Modelling geographically weighted
truncated spline regression using maximum likelihood estimation for human development dis-
parities,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 10, pp. 290–300, 2025. DOI:
10.18860/ca.v10i1.31381.

[14] N. Fitriyati and M. Y. Wijaya, “A monte carlo simulation study to assess estimation methods in
cfa on ordinal data,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 7, pp. 332–344, 2022.
DOI: 10.18860/ca.v7i3.14434.

[15] A. Agresti, Categorical Data Analysis. John Wiley Sons, 2013.
[16] M. A. A. Fawazdhia1 and Z. A. Rafsanjani, “Long short term memory using stochastic gradient
descent and adam for stock prediction,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 8,
pp. 16–29, 2023. DOI: 10.18860/ca.v8i2.17789.

[17] M. Ali and S. AbouRizk, “Updating simulation model parameters using stochastic gradient de-
scent,” Automation in Construction, vol. 166, 2024. DOI: 10 . 1016 / j . autcon . 2024 .
105676.

[18] M. F. Qudratullah, “Misklasifikasi mahasiswa baru fsaintek uin sunan kalijaga jalur tes dengan
analisis regresi logistik,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 1, pp. 175–181,
2011. DOI: 10.18860/ca.v1i4.1799.

[19] I. Ghozali, Aplikasi Analisis Multivariate dengan Program SPSS. Universitas Diponegoro, 2016.

[20] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression. John Wiley Sons, 2000. DOI:
10.1002/0471722146.

[21] S. Konishi and G. Kitagawa, Information criteria and statistical modeling. Springer series in statis-
tics, 2007. DOI: 10.1007/978-0-387-71887-3.

[22] E. I. Harlyan, E. S. Yulianto, Y. Fitriani, and Sunardi, “Akaike information criterion (aic) in mea-
surement of technical efficiency of purse seine fishery in tuban, east java,” Marine Fisheries:
Journal of Marine Fisheries Technology and Managemen, vol. 11, pp. 181–188, 2021. DOI: 10.
29244/jmf.v11i2.38550




DOI: https://doi.org/10.18860/cauchy.v10i2.33177

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Aldi Rahmad Nur Fauzi, Sobri Abusini, Corina Karim

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.