Pricing Modified Barrier Options Using the Bino-Trinomial Tree Model: A Strategy for Loss Minimization

Rima Aulia Rahayu, Fitriani Agustina, Kuntjoro Adji Sidarto

Abstract


A particular exotic option that is widely traded in the global financial market is the barrier option. Barrier options are attractive because they have a limit that must be reached to activate the option. These limits may be utilized by investors as a point of reference to minimize potential losses. Accordingly, the researcher attempts to use the bino-trinomial tree model as a new approach to minimize losses. The purpose of this study is to analyze the bino-trinomial tree model to provide investors with more flexible hedging experience. The bino-trinomial tree model is obtained by combining the trinomial tree model at the first stage, then the binomial tree model at a further stage. This analysis was conducted by calculating the type of knock-out european call options. The results demonstrate that this model can effectively, accurately and flexibly manage the complex options required by modern investors, including multi-step single moving barrier options and single window barrier options.


Keywords


barrier options; bino-trinomial tree; trinomial tree

Full Text:

PDF

References


[1] L. Miljkovi´c, “The role of financial derivatives in financial risks management,” MEST Journal,
vol. 11, no. 1, pp. 97–104, 2023. DOI: 10.12709/mest.11.11.01.09.

[2] P. Jalaludin, A. Rahman, A. Nuraini, and R. Amigo, “Perhitungan harga opsi eropa dengan metode
trinomial pada perusahaan mitsubishi,” Jurnal Lentera Akuntansi, vol. 9, no. 1, pp. 116–124, 2024.
DOI: 10.34127/jrakt.v9i1.1179.

[3] S. R. Gottimukkala, “Optimizing exotic option pricing: Monte carlo simulation and variance re-
duction techniques,” Preprints, vol. 2024, no. 9, pp. 1–20, 2024. DOI: 10.20944/preprints202
409.2256.v1.

[4] K. Yao and Z. Qin, “Barrier option pricing formulas of an uncertain stock model,” Fuzzy Opti-
mization and Decision Making, vol. 20, no. 1, pp. 81–100, Mar. 2021. DOI: 10.1007/s10700-0
20-09333-w.

[5] M. Gao and Z. Wei, “The barrier binary options,” Journal of Mathematical Finance, vol. 10, no. 1,
pp. 140–156, 2020. DOI: 10.4236/jmf.2020.101010.

[6] N. Ratanov, “Jump-telegraph market model: Barrier binary options,” in Mathematical and Statis-
tical Methods for Actuarial Sciences and Finance. MAF 2022, M. Corazza, C. Perna, and C. Pizzi,
Eds., Springer, Cham, 2022, pp. 390–396. DOI: 10.1007/978-3-030-99638-3_63.

[7] S. M. Nuugulu, F. Gideon, and K. C. Patidar, “An efficient numerical method for pricing double-barrier
options on an underlying stock governed by a fractal stochastic process,” Fractal and Fractional,
vol. 7, no. 5, p. 389, May 2023. DOI: 10.3390/fractalfract7050389.

[8] C. Zhou, Y. Wang, and M. Zhang, “Pricing barrier options under stochastic volatility: Improve-
ments on the black-scholes framework,” Journal of Computational and Applied Mathematics,
vol. 405, p. 113 041, 2022. DOI: 10.1016/j.cam.2022.113041.

[9] A. Itkin and D. Muravey, “Semi-closed form prices of barrier options in the Hull–White model,”
The Journal of Derivatives, vol. 29, no. 1, pp. 9–26, 2021, Based on arXiv:2004.09591; Risk.net
Dec 2020. DOI: 10.48550/arXiv.2004.09591.

[10] P. Roul, “A high accuracy numerical method and its convergence for time-fractional black-scholes
equation governing european options,” Applied Numerical Mathematics, vol. 151, pp. 472–493,
2020. DOI: 10.1016/j.apnum.2019.11.004.

[11] Y. Jerbi and R. Bouzid, “Barrier options pricing under stochastic volatility using monte carlo
simulation,” International Journal of Finance & Banking Studies, vol. 12, no. 3, pp. 32–39, 2023.
DOI: 10.20525/ijfbs.v12i3.2851.

[12] L. V. Ballestra, “Enhancing finite difference approximations for double barrier options: Mesh op-
timization and repeated richardson extrapolation,” Computational Management Science, vol. 18,
no. 2, pp. 239–263, 2021. DOI: 10.1007/s10287-021-00394-9.

[13] J.-Y. Wang, C.-J. Wang, T.-S. Dai, T.-C. Chen, L.-C. Liu, and L. Zhou, “Efficient and robust com-
binatorial option pricing algorithms on the trinomial lattice for polynomial and barrier options,”
Mathematical Problems in Engineering, vol. 2022, Article 5843491, 2022. DOI: 10.1155/2022
/5843491.

[14] J. Talponen and M. Turunen, “Option pricing: A yet simpler approach,” Decisions in Economics
and Finance, vol. 45, pp. 57–81, 2022. DOI: 10.1007/s10203-021-00338-7.

[15] G. Leduc and K. J. Palmer, “What a difference one probability makes in the convergence of bi-
nomial trees,” International Journal of Theoretical and Applied Finance, vol. 23, no. 6, pp. 1–26,
2020. DOI: 10.1142/S0219024920500405.

[16] D. Josheski and M. Apostolov, “A review of the binomial and trinomial models for option pric-
ing and their convergence to the black-scholes model determined option prices,” Econometrics.
Ekonometria. Advances in Applied Data Analysis, vol. 24, no. 2, pp. 53–85, Jul. 2020. DOI: 10.1
5611/eada.2020.2.05.

[17] M. H. Asnawi and A. Aziz, “Metode enhanced trinomial pada aproksimasi numerik pada barrier
options pricing,” Jurnal Riset Mahasiswa Matematika, vol. 1, no. 1, pp. 23–31, Oct. 2021. DOI:
10.18860/jrmm.v1i1.13412.

[18] T.-S. Dai and Y.-D. Lyuu, “The bino-trinomial tree: A simple model for efficient and accurate
option pricing,” Journal of Derivatives, vol. 17, no. 4, pp. 7–24, Jun. 2010. DOI: 10.3905/jod.2
010.17.4.007.

[19] F. Agustina, N. Sumarti, and K. A. Sidarto, “Construction of the bino-trinomial method using the
fuzzy set approach for option pricing,” Journal of the Indonesian Mathematical Society, vol. 30,
no. 2, pp. 179–204, Aug. 2024. DOI: 10.22342/jims.30.2.1775.179-204.

[20] Y.-M. Lu and Y.-D. Lyuu, “Very fast algorithms for implied barriers and moving-barrier options
pricing,” Mathematics and Computers in Simulation, vol. 205, pp. 251–271, Mar. 2023. DOI: 10
.1016/j.matcom.2022.09.018.

[21] H. Lee, Y. Kye, B. Kong, and S. Song, “Multi-step double barrier options under time-varying
interest rates,” The North American Journal of Economics and Finance, p. 102 372, 2025. DOI:
10.1016/j.najef.2025.102372.

[22] H. Lee, E. Kim, and B. Ko, “Valuing lookback options with barrier,” The North American Journal
of Economics and Finance, vol. 60, p. 101 660, 2022. DOI: 10.1016/j.najef.2022.101660.

[23] H. Lee, G. Lee, and S. Song, “Multi-step reflection principle and barrier options,” Journal of
Futures Markets, vol. 42, no. 4, pp. 692–721, 2022. DOI: 10.1002/fut.22306.

[24] Riaman, K. Parmikanti, I. Irianingsih, K. Joebaedi, and S. Supian, “Convergence of binomial tree
methods to black–scholes model on determining stock option prices,” in IOP Conference Series:
Materials Science and Engineering, ser. ISE, vol. 567, 2019, p. 012 013. DOI: 10.1088/1757-8
99X/567/1/012013.

[25] D. Lilyana, B. Subartini, A. Supriatna, et al., “Calculation of call option using trinomial tree
method and black-scholes method case study of microsoft corporation,” in Journal of Physics:
Conference Series, IOP Publishing, vol. 1722, 2021, p. 012 064. DOI: 10.1088/1742-6596/172
2/1/012064.

[26] S. A. Jumana and A. S. Hossain, “Pricing exotic options using some lattice procedures,” GANIT:
Journal of Bangladesh Mathematical Society, vol. 41, no. 1, pp. 26–40, 2021. DOI: 10.3329/ga
nit.v41i1.55024.

[27] R. Mendoza-Ramírez, R. Silva, R. Domínguez-Mora, E. Juan-Diego, and E. Carrizosa-Elizondo,
“Comparison of two convergence criterion in the optimization process using a recursive method
in a multi-reservoir system,” Water, vol. 14, no. 19, p. 2952, 2022. DOI: 10.3390/w14192952.

[28] J. Stoklosa and A. Xia, “Studies of barrier options and their sensitivities,” Supervisor: Kostya
Borovkov; Second Examiner: Aihua Xia, Honours thesis, The University of Melbourne, Nov.
2007. Available online.




DOI: https://doi.org/10.18860/cauchy.v10i2.33239

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rima Aulia Rahayu, Fitriani Agustina, Kuntjoro Adji Sidarto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.