Locating Metric Coloring on The Cherry Blossom, Sun Flower and Closed Dutch Windmill Graphs
Abstract
Locating metric coloring is a variation of metric coloring in graphs that integrates vertex coloring with the uniqueness of metric representations. In this coloring, each vertex in a connected graph is assigned a color such that the distance vectors to each color class are distinct for every pair of different vertices. Let be a coloring function (not necessarily proper). The coloring ccc is called a locating metric coloring if, for any two distinct vertices , their distance vectors , so it is obtained represents the partition of vertices by color classes. Thus, for every vertex, the distance vector are different. Vertices may share the same color, whether adjacent or not, as long as their metric representations are unique. The smallest number of colors required for such a coloring is called the locating metric chromatic number, denoted T This study focuses on analyzing locating metric coloring for three specific graphs: the Cherry Blossom graph , the Sun Flower graph , and the Closed Dutch Windmill graph . These graphs were chosen due to the absence of prior research on their locating metric coloring properties. The research method combines pattern recognition and a deductive-axiomatic approach. The proof process begins by determining lower bounds, followed by the construction of upper bounds through coloring function analysis. The resulting locating metric chromatic numbers for each graph are then established.
Keywords
Full Text:
PDFReferences
Adawiyah, R., Aima, M., & Kristiana, A. I. (2023). an Inclusive Local Irregularity Vertex Coloring of Book Graph Family. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(2), 0601–0608. https://doi.org/10.30598/barekengvol17iss2pp0601-0608
Adawiyah, R., Dafik, Agustin, I. H., Prihandini, R. M., Alfarisi, R., & Albirri, E. R. (2020). On the local multiset dimension of graph with homogenous pendant edges. Journal of Physics: Conference Series, 1538(1). https://doi.org/10.1088/1742-6596/1538/1/012023
Adawiyah, R., Dafik, Prihandini, R. M., Albirri, E. R., Agustin, I. H., & Alfarisi, R. (2019). The local multiset dimension of unicyclic graph. IOP Conference Series: Earth and Environmental Science, 243(1). https://doi.org/10.1088/1755-1315/243/1/012075
Afriantini, A., Helmi, H., & Fransiskus, F. (2019). Pewarnaan Simpul, Sisi, Wilayah Pada Graf dan Penerapannya. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(4), 773–782. https://doi.org/10.26418/bbimst.v8i4.36037
Alfarisi, R., Kristiana, A. I., Albirri, E. R., Adawiyah, R., & Dafik. (2019). Metric chromatic number of unicyclic graphs. International Journal of Scientific and Technology Research, 8(6), 127–130. https://www.ijstr.org/final-print/june2019/Metric-Chromatic-Number-Of-Unicyclic-Graphs.pdf
Behtoei, A. (2011). The Locating Chromatic Number of the Join of Graphs. https://arxiv.org/abs/1112.2357
Chartrand, G., Zhang, P., & Harary, F. (1998). On the Identifying Chromatic Number of Graphs. Discussiones Mathematicae Graph Theory, 18(2), 193–211.
Chartrand, G., Okamoto, F., & Zhang, P. (2000). The Metric Chromatic Number of a Graph. Discussiones Mathematicae Graph Theory, 20(2), 339–346.
Chartrand, G., Erwin, D., Henning, M. A., Slater, P. J., & Zhang, P. (2009). The Metric Chromatic Number of a Graph. Australasian Journal of Combinatorics. https://ajc.maths.uq.edu.au/pdf/44/ajc_v44_p273.
Dafik, Kristiana, Ridho (2024). Locating Metric Coloring. Unej
Daswa, D., & Riyadi, M. (2017). Aplikasi Pewarnaan Graf Pada Masalah Penyusunan Jadwal Perkuliahan di Universitas Kuningan. JES-MAT (Jurnal Edukasi Dan Sains Matematika), 3(2), 217. https://doi.org/10.25134/jes-mat.v3i2.695
Epstein, L., Levin, A., & Woeginger, G. J. (2015). The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica, 72(4), 1130–1171. https://pure.tue.nl/ws/files/3891635/43179071317553.pdf
Estrada-Moreno, A., Rodríguez-Velázquez, J. A., & Yero, I. G. (2013). The k-metric dimension of a graph. ArXiv Preprint ArXiv:1312.6840. https://doi.org/10.12785/amis/090609
Evalia, F., Yundari, & Fran, F. (2019). Bilangan Kromatik Bintang Pada Graf Yang Memuat Bintang Dan Cycle. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 8(2), 307–316. https://doi.org/10.26418/bbimst.v8i2.32462
Febrianti, F., Yulianti, L., & Narwen, N. (2019). Dimensi Metrik Pada Graf Amalgamasi Tangga Segitiga Diperumum Homogen. Jurnal Matematika UNAND, 8(1), 84. https://doi.org/10.25077/jmu.8.1.84-90.2019
Fouquet, J.-L., & Vanherpe, J. (2010). On the Identifying and Locating-Coloring Problem in Graphs. Discrete Mathematics, 310(20), 3043–3050.
Ghanbari, M., & Zaker, M. (2021). On the comparison of the distinguishing coloring and the locating chromatic number of graphs. https://arxiv.org/pdf/2112.03594
Kelenc, A., Tratnik, N., & Yero, I. G. (2018). Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Applied Mathematics, 251, 204–220. https://doi.org/10.1016/j.dam.2018.05.052
Knor, M., Majstorović, S., Toshi, A. T. M., Škrekovski, R., & Yero, I. G. (2021). Graphs with the edge metric dimension smaller than the metric dimension. Applied Mathematics and Computation, 401, 126076. https://doi.org/10.1016/j.amc.2021.126076
Kristiana, A. I., Alfarisi, R., A’yun, Q., & Saputra, G. (2023). Pelabelan dan Pewarnaan Graf (1st ed). Universitas Jember.
Ma’arif, A., Halim, M. G., Indriani, S., Kristiana, A. I., & Alfarisi, R. (2021). Pewarnaan Titik Ketakteraturan Lokal Inklusif Pada Graf Kipas, Graf Petasan, Dan Graf Matahari. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 727–734. https://doi.org/10.30598/barekengvol15iss4pp727-734
Raj, F. S., & George, A. (2017). On the metric dimension of HDN 3 and PHDN 3. 2017 IEEE Internasional Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), 1333–1336. https://doi.org/10.1109/ICPCSI.2017.8391927
Rohmatulloh, M. Y., Slamin, Kristiana, A. I., Dafik, & Alfarisi, R. (2021). On metric chromatic number of comb product of ladder graph. Journal of Physics: Conference Series, 1836(1). https://doi.org/10.1088/1742-6596/1836/1/012026
Salman, A. N. M., Baskoro, R., & Surahmat, T. M. (2009). On the locating chromatic number of trees. Journal of Combinatorial Mathematics and Combinatorial Computing. https://future-in-tech.net/17.1/R-Baskoro.
Saputro, N. N., Baskoro, E. T., & Assiyatun, H. (2021). The locating chromatic number for amalgamation of some graphs. InPrime: Indonesian Journal of Pure and Applied Mathematics. https://journal.uinjkt.ac.id/index.php/inprime/article/view/38711
Sebo, A., & Tannier, E. (2004). Coloring Graphs with Distinguishing and Identifying Constraints. Discrete Applied Mathematics, 157(7), 1415–1421.
Ullah, S. A., Imran, M., & Baig, A. Q. (2020). Locating chromatic number of middle graph of path, cycle, star, wheel, gear, and helm graphs. Journal of Combinatorial Mathematics and Combinatorial Computing. https://combinatorialpress.com/jcmcc-articles/volume-119/locating-chromatic-number-of-middle-graph-of-path-cycle-star-wheel-gear-and-helm-graphsDOI: https://doi.org/10.18860/cauchy.v10i2.33636
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Arika Indah Kristiana, Agustina Hotimatus Khusnul, Dafik Dafik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







