World Gold Price Prediction After United State Election Using Pulse Function Intervention Analysis

Sediono Sediono, Anggi Triya Vionita, Fayza Shafira Renianti

Abstract


The United States (US) election in November 2024 had a significant impact on global economic conditions, especially world gold prices. A key effect was the strengthening of the US dollar, leading to a sharp drop in gold prices to 2,582.1 USD. This study aims to model and forecast gold prices using the pulse function intervention analysis method. The analysis uses weekly data, with the intervention point set in the second week of November 2024 (t = 101). The best pre-intervention model was identified as ARIMA(0,2,1), while the best intervention model had orders b = 1, r = 0, s = 0, based on analysis of the Cross Correlation Function (CCF). The resulting model shows significant parameters and strong performance, with a MAPE of 1.51\%, AIC of -530.394, SBC of -525.030, and MSE of 0.0002037. Forecasts indicate gold prices are likely to increase again through the end of July 2025. These findings show that the pulse intervention model effectively captures external shocks, such as post-election dollar appreciation. The study improves our understanding of the dynamics of global gold prices and offers insights that can help policymakers develop strategies to mitigate the risks caused by fluctuations in the external market.

Keywords


Gold Price, Pulse Function Intervention Analysis, ARIMA

Full Text:

PDF

References


[1] WGC, “Gold market commentary under pressure.” https://www.gold.org, 2024.

[2] A. A. Salisu, I. D. Raheem, and X. V. Vo, “Assessing the safe vaven property of the gold market during covid-19 pandemic,” International Review of Financial Analysis, vol. 74, p. 101666, Mar 2021.

[3] R. Afrian, “Pengaruh fluktuasi kurs us dollar dan harga emas terhadap penjualan mulia pegadaian periode tahun 2019– 2023,” EKOMA: Jurnal Ekonomi, Manajemen dan Akun tansi, vol. 4, pp. 5229–5241, Mar 2025.

[4] V. Koziuk, “Role of gold in foreign exchange reserves of commodity exporting countries,” Journal of European Economy, vol. 20, p. 77, Jun 2021.

[5] V. Dodonov, “Gold as a factor of change in central bank reserves in periods of the finan cial markets turbulence: the case of kazakhstan,” Journal of Central Banking Theory and Practice, vol. 11, pp. 209–224, May 2022.

[6] C. C. Kurniasari, Y. E. Pratiwi, and S. D. Lasianti, “Pengaruh kenaikan suku bunga the fed, harga minyak dunia terhadap ihsg dalam pergerakan pasar modal,” Jurnal Penelitian Ekonomi dan Akuntansi, vol. 7, pp. 333–347, Nov 2023.

[7] F. A. Beeg, M. S. Paendong, M. L. Mananohas, and G. Price, “Penerapan model arima garch untuk peramalan harga emas dunia,” d’CARTESIAN, vol. 3, no. 2, 2024.

[8] D. J. Bilqis and D. E. Kusrini, “Analisis intervensi fungsi step terhadap harga saham pt. indofood cbp sukses makmur tbk,” Jurnal Sains dan Seni ITS, vol. 12, no. 4, 2023.

[9] G. E. P. Box and G. C. Tiao, “Intervention analysis with applications to economic and environmental problems,” Journal of the American Statistical Association, vol. 70, pp. 70 79, Mar 1975.

[10] Sediono and I. Syahzaqi, “Modeling inpatient cases of covid-19 in jakarta using pulse function intervention analysis approach,” in AIP Conference Proceedings, 2023.

[11] A. R. Saputra, S. Wahyuningsih, and M. Siringoringo, “Peramalan jumlah titik panas provinsi kalimantan timur menggunakan analisis intervensi fungsi pulse,” EKSPONEN SIAL, vol. 12, p. 93, Jun 2021.

[12] Investing, “Data historis emas berjangka.” https://id.investing.com/ commodities/gold-historical-data, 2025.

[13] M. S. Pradana, D. Rahmalia, and E. D. A. Prahastini, “Peramalan nilai tukar petani kabu paten lamongan dengan arima,” Jurnal Matematika, vol. 10, pp. 91–104, Dec 2020.

[14] W. W.S. Wei, Time Series Analysis: Univariate and Multivariate Methods. United States: Greg Tobin, 2 ed., 2006.

[15] M. S. Hammami, “Prediksi harga gandum dunia berdasarkan bursa jangka amerika serikat dengan pendekatan analisis fungsi pulse,” 2023.

[16] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting. Canada: Wiley, 2008.




DOI: https://doi.org/10.18860/cauchy.v10i2.33706

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sediono Sediono, Anggi Triya Vionita, Fayza Shafira Renianti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.