Rainfall Forecasting using Spatio-Temporal and Neural Network Study Case: Meteorological Data of Madura Island
Abstract
Rainfall forecasting is crucial in meteorological studies due to its significant impact on sectors such as agriculture, which is the main livelihood on Madura Island. This study aims to forecast rainfall on Madura Island using a hybrid approach that combines the Generalized Space-Time Autoregressive-X (GSTARX) model and Neural Network (NN). The data used consist of daily rainfall records from Bangkalan, Sampang, Pamekasan, and Sumenep, covering the period from January 2013 to December 2023. Data from January 2013 to September 2023 were used for training, while data from October to December 2023 were used for testing. The GSTARX model was employed to capture spatio-temporal patterns, while the NN was applied to learn the non-linear relationships in the residuals. The results show that the GSTARX model effectively captures rainfall patterns, though some differences remain compared to the actual data, with RMSE values of Bangkalan (1.514), Sampang (0.256), Pamekasan (0.477), and Sumenep (0.127). Meanwhile, the hybrid GSTARX-FFNN model achieved improved forecasting performance in Sampang (0.392), Pamekasan (0.679), and Sumenep (0.412), although Bangkalan recorded a higher RMSE (1.359). Overall, the GSTARX model proved more effective in forecasting rainfall on Madura Island, delivering smaller and more consistent prediction errors.
Keywords
Full Text:
PDFReferences
R. Pandey, M. Upadhya, and M. Singh, “Rainfall prediction using logistic regression and random forest algorithm,” 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), vol. 5, 2024, pp. 663–668. doi: 10.1109/IC2PCT60090.2024.10486681.
N. K. A. Appiah-Badu, Y. M. Missah, L. K. Amekudzi, N. Ussiph, T. Frimpong, and E. Ahene, “Rainfall prediction using machine learning algorithms for the various ecological zones of Ghana,” IEEE Access, vol. 10, pp. 5069–5082, 2022. doi: 10.1109/ACCESS.2021.3139312.
K. Ramani, M. S. Reddy, K. Bhavani, S. Feeza, and V. S. Bavesh, “Optimization of rainfall prediction using satellite data through machine learning and deep learning algorithms,” 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS), 2024, pp. 1–5. doi: 10.1109/ICITEICS61368.2024.10625624.
R. Asadi and A. C. Regan, “A spatio-temporal decomposition based deep neural network for time series forecasting,” Applied Soft Computing, vol. 87, p. 105963, 2020. doi: 10.1016/j.asoc.2019.105963.
T. Toharudin, R. E. Caraka, H. Yasin, and B. Pardamean, “Evolving hybrid generalized space-time autoregressive forecasting with cascade neural network particle swarm optimization,” Atmosphere, vol. 13, no. 6, 2022. doi: 10.3390/atmos13060875.
A. M. Hemeida, S. A. Hassan, A.-A. A. Mohamed, et al., “Nature-inspired algorithms for feed-forward neural network classifiers: A survey of one decade of research,” Ain Shams Engineering Journal, vol. 11, no. 3, pp. 659–675, 2020. doi: 10.1016/j.asej.2020.01.007.
E. G. Dada, H. J. Yakubu, and D. O. Oyewola, “Artificial neural network models for rainfall prediction,” European Journal of Electrical Engineering and Computer Science, vol. 5, no. 2, pp. 30–35, Apr. 2021. doi: 10.24018/ejece.2021.5.2.313.
A. Iriany, D. Rosyida, A. D. Sulistyono, and B. N. Ruchjana, “Precipitation forecasting using neural network model approach,” IOP Conference Series: Earth and Environmental Science, vol. 458, no. 1, p. 012020, Feb. 2020. doi: 10.1088/1755-1315/458/1/012020.
B. Safitri, A. Iriany, and N. W. S. Wardhani, “Perbandingan akurasi peramalan curah hujan dengan menggunakan arima, hybrid arima-nn, dan ffnn di Kabupaten Malang,” Seminar Nasional Official Statistics, vol. 2021, no. 1, pp. 245–253, Nov. 2021. doi: 10.34123/semnasoffstat.v2021i1.853.
E. Setyowati, Suhartono, and D. D. Prastyo, “A hybrid generalized space-time autoregressive-elman recurrent neural network model for forecasting space-time data with exogenous variables,” Journal of Physics: Conference Series, vol. 1752, no. 1, p. 012012, Feb. 2021. doi: 10.1088/1742-6596/1752/1/012012.
A. N. Biswas, Y. H. Lee, D. Y. Heh, and S. Manandhar, “Study of temporal and spatial correlation of precipitable water vapor with rainfall for tropical region,” IGARSS 2022 - IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 6464–6467. doi: 10.1109/IGARSS46834.2022.9884477.
A. D. Sulistyono, Hartawati, A. Iriany, N. W. Suryawardhani, and A. Iriany, “Rainfall forecasting in agricultural areas using gstar-sur model,” IOP Conference Series: Earth and Environmental Science, vol. 458, no. 1, p. 012041, Feb. 2020. doi: 10.1088/1755-1315/458/1/012041.
A. Astasia, S. Wulandary, A. N. Istinah, and I. F. Yuliati, “Peramalan tingkat profitabilitas bank syariah dengan menggunakan model fungsi transfer single input,” Jurnal Statistika dan Aplikasinya, vol. 4, no. 1, pp. 11–22, Jul. 2020. doi: 10.21009/JSA.04102.
R. P. Permata, R. Ni’mah, and A. T. R. Dani, “Daily rainfall forecasting with arima exogenous variables and support vector regression,” Jurnal Varian, vol. 7, no. 2, pp. 177–188, 2024. doi: 10.30812/varian.v7i2.3202.
K. Ng, Y. Huang, C. Koo, K. Chong, A. El-Shafie, and A. Najah Ahmed, “A review of hybrid deep learning applications for streamflow forecasting,” Journal of Hydrology, vol. 625, p. 130141, 2023. doi: 10.1016/j.jhydrol.2023.130141.
R. P. Permata, A. Muhaimin, and S. Hidayati, “Rainfall forecasting with an intermittent approach using hybrid exponential smoothing neural network,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 1, pp. 0457–0466, 2024. doi: 10.30598/barekengvol18iss1pp0457-0466.
S.-Q. Dotse, I. Larbi, A. M. Limantol, and L. C. De Silva, “A review of the application of hybrid machine learning models to improve rainfall prediction,” Modeling Earth Systems and Environment, vol. 10, no. 1, pp. 19–44, 2024. doi: 10.1007/s40808-023-01835-x.
A. A. Patil and K. Kulkarni, “A hybrid machine learning - numerical weather prediction approach for rainfall prediction,” 2023 IEEE India Geoscience and Remote Sensing Symposium (InGARSS), 2023, pp. 1–4. doi: 10.1109/InGARSS59135.2023.10490397.
DOI: https://doi.org/10.18860/cauchy.v10i2.35091
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ryanta Meylinda Savira

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




-CAUCHY27.png)



