Comparative Study of Hybrid ARIMA-LSTM and ARIMAX-LSTM for Bitcoin Forecasting with Data Partitioning

Fikrie Hartanta Sembiring, Regita Putri Permata, Rifdatun Ni'mah

Abstract


The extreme volatility of Bitcoin prices poses significant challenges for accurate forecasting using conventional models. While ARIMA excels at capturing linear trends, it struggles with non-linear dynamics; conversely, LSTM networks can model non-linearity but often overfit noisy data. To address these limitations, this study investigates six forecasting configurations: standalone ARIMAX, standalone LSTM, and four hybrid ARIMA/ARIMAX-LSTM models employing both single-split and two-stage split strategies. A comprehensive out-of-sample evaluation on daily Bitcoin closing prices reveals that the two-stage split hybrid ARIMA-LSTM achieves a remarkable MAPE of 2.60%, outperforming all other configurations. The results demonstrate that residual structure and strategic data partitioning critically influence hybrid model performance by enhancing residual learnability. These findings offer practical guidance for researchers and practitioners designing robust forecasting pipelines for highly volatile financial markets.

Keywords


Bitcoin forecasting; ARIMA; LSTM; Hybrid model; Time series

Full Text:

PDF

References


N. Antonakakis, I. Chatziantoniou, and D. Gabauer, “Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios,” Journal of International Financial Markets, Institutions and Money, vol. 61, pp. 37–51, Jul. 2019. doi: 10.1016/j.intfin.2019.02.003.

Y. Zeng and H. Zhu, “Short-term prediction of bitcoin value based on arima model,” in International Conference on Applied Statistics, Computational Mathematics, and Software Engineering (ASCMSE 2022), S. Guan and H. Zhu, Eds., SPIE, Sep. 2022, p. 26. doi: 10.1117/12.2648797.

S. Corbet, B. Lucey, A. Urquhart, and L. Yarovaya, “Cryptocurrencies as a financial asset: A systematic analysis,” International Review of Financial Analysis, vol. 62, pp. 182–199, Mar. 2019. doi: 10.1016/j.irfa.2018.09.003.

S. Khan and H. Alghulaiakh, “Arima model for accurate time series stocks forecasting,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, 2020. doi: 10.14569/IJACSA.2020.0110765.

S. Khanderwal and D. Mohanty, “Stock price prediction using arima model,” International Journal of Marketing & Human Resource Research, vol. 2, pp. 98–107, 2 Apr. 2021. doi: 10.47747/ijmhrr.v2i2.235.

N. K. A. I. Suryani, O. Sudana, and A. Wirdiani, “Forecasting pneumonia toddler mortality using comparative model arima and multilayer perceptron,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, pp. 528–537, 4 Aug. 2022. doi: 10.29207/resti.v6i4.4106.

R. P. Permata, A. Muhaimin, and S. Hidayati, “Rainfall forecasting with an intermittent approach using hybrid exponential smoothing neural network,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, pp. 0457–0466, 1 Mar. 2024. doi: 10.30598/barekengvol18iss1pp0457-0466.

Y. Hua, “Bitcoin price prediction using arima and lstm,” E3S Web of Conferences, vol. 218, p. 01050, Dec. 2020. doi: 10.1051/e3sconf/202021801050.

M. F. Rizkilloh and S. Widiyanesti, “Prediksi harga cryptocurrency menggunakan algoritma long short term memory (lstm),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, pp. 25–31, 1 Feb. 2022. doi: 10.29207/resti.v6i1.3630.

T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with lstm neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, pp. 3127–3141, 8 Aug. 2020. doi: 10.1109/TNNLS.2019.2935975.

W. K. Adu, P. Appiahene, and S. Afrifa, “Var, arimax and arima models for nowcasting unemployment rate in ghana using google trends,” Journal of Electrical Systems and Information Technology, vol. 10, p. 12, 1 Feb. 2023. doi: 10.1186/s43067-023-00078-1.

N. Latif, J. D. Selvam, M. Kapse, V. Sharma, and V. Mahajan, “Comparative performance of lstm and arima for the short-term prediction of bitcoin prices,” Australasian Accounting, Business and Finance Journal, vol. 17, pp. 256–276, no. 1, 2023. doi: 10.14453/aabfj.v17i1.15.

E. Dave, A. Leonardo, M. Jeanice, and N. Hanafiah, “Forecasting indonesia exports using a hybrid model arima-lstm,” Procedia Computer Science, vol. 179, pp. 480–487, 2021. doi: 10.1016/j.procs.2021.01.031.

W. Lu, H. Rui, C. Liang, L. Jiang, S. Zhao, and K. Li, “A method based on ga-cnn-lstm for daily tourist flow prediction at scenic spots,” Entropy, vol. 22, p. 261, 3 Feb. 2020. doi: 10.3390/e22030261.

R. Zhang, Z. Guo, Y. Meng, et al., “Comparison of arima and lstm in forecasting the incidence of hfmd combined and uncombined with exogenous meteorological variables in ningbo, china,” International Journal of Environmental Research and Public Health, vol. 18, p. 6174, 11 Jun. 2021. doi: 10.3390/ijerph18116174.

L. Pan, “Cryptocurrency price prediction based on arima, random forest and lstm algorithm,” BCP Business & Management, vol. 38, pp. 3396–3404, Mar. 2023. doi: 10.54691/bcpbm.v38i.4313.

N. Tripathy, S. Hota, D. Mishra, P. Satapathy, and S. K. Nayak, “Empirical forecasting analysis of bitcoin prices,” International journal of electrical and computer engineering systems, vol. 15, pp. 21–29, 1 Jan. 2024. doi: 10.32985/ijeces.15.1.3.

D. Hindarto, “Comparison of rnn architectures and non-rnn architectures in sentiment analysis,” Sinkron: jurnal dan penelitian teknik informatika, vol. 7, no. 4, pp. 2537–2546, 2023. doi: 10.33395/sinkron.v8i4.13048.

S. Ray, A. Lama, P. Mishra, T. Biswas, S. S. Das, and B. Gurung, “An arima-lstm model for predicting volatile agricultural price series with random forest technique,” Applied Soft Computing, vol. 149, p. 110939, Dec. 2023. doi: 10.1016/j.asoc.2023.110939.




DOI: https://doi.org/10.18860/cauchy.v10i2.35118

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fikrie Hartanta Sembiring, Regita Putri Permata, Rifdatun Ni'mah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.