Comparative Study of Hybrid ARIMA-LSTM and ARIMAX-LSTM for Bitcoin Forecasting with Data Partitioning
Abstract
Keywords
Full Text:
PDFReferences
N. Antonakakis, I. Chatziantoniou, and D. Gabauer, “Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios,” Journal of International Financial Markets, Institutions and Money, vol. 61, pp. 37–51, Jul. 2019. doi: 10.1016/j.intfin.2019.02.003.
Y. Zeng and H. Zhu, “Short-term prediction of bitcoin value based on arima model,” in International Conference on Applied Statistics, Computational Mathematics, and Software Engineering (ASCMSE 2022), S. Guan and H. Zhu, Eds., SPIE, Sep. 2022, p. 26. doi: 10.1117/12.2648797.
S. Corbet, B. Lucey, A. Urquhart, and L. Yarovaya, “Cryptocurrencies as a financial asset: A systematic analysis,” International Review of Financial Analysis, vol. 62, pp. 182–199, Mar. 2019. doi: 10.1016/j.irfa.2018.09.003.
S. Khan and H. Alghulaiakh, “Arima model for accurate time series stocks forecasting,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, 2020. doi: 10.14569/IJACSA.2020.0110765.
S. Khanderwal and D. Mohanty, “Stock price prediction using arima model,” International Journal of Marketing & Human Resource Research, vol. 2, pp. 98–107, 2 Apr. 2021. doi: 10.47747/ijmhrr.v2i2.235.
N. K. A. I. Suryani, O. Sudana, and A. Wirdiani, “Forecasting pneumonia toddler mortality using comparative model arima and multilayer perceptron,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, pp. 528–537, 4 Aug. 2022. doi: 10.29207/resti.v6i4.4106.
R. P. Permata, A. Muhaimin, and S. Hidayati, “Rainfall forecasting with an intermittent approach using hybrid exponential smoothing neural network,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, pp. 0457–0466, 1 Mar. 2024. doi: 10.30598/barekengvol18iss1pp0457-0466.
Y. Hua, “Bitcoin price prediction using arima and lstm,” E3S Web of Conferences, vol. 218, p. 01050, Dec. 2020. doi: 10.1051/e3sconf/202021801050.
M. F. Rizkilloh and S. Widiyanesti, “Prediksi harga cryptocurrency menggunakan algoritma long short term memory (lstm),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, pp. 25–31, 1 Feb. 2022. doi: 10.29207/resti.v6i1.3630.
T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with lstm neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, pp. 3127–3141, 8 Aug. 2020. doi: 10.1109/TNNLS.2019.2935975.
W. K. Adu, P. Appiahene, and S. Afrifa, “Var, arimax and arima models for nowcasting unemployment rate in ghana using google trends,” Journal of Electrical Systems and Information Technology, vol. 10, p. 12, 1 Feb. 2023. doi: 10.1186/s43067-023-00078-1.
N. Latif, J. D. Selvam, M. Kapse, V. Sharma, and V. Mahajan, “Comparative performance of lstm and arima for the short-term prediction of bitcoin prices,” Australasian Accounting, Business and Finance Journal, vol. 17, pp. 256–276, no. 1, 2023. doi: 10.14453/aabfj.v17i1.15.
E. Dave, A. Leonardo, M. Jeanice, and N. Hanafiah, “Forecasting indonesia exports using a hybrid model arima-lstm,” Procedia Computer Science, vol. 179, pp. 480–487, 2021. doi: 10.1016/j.procs.2021.01.031.
W. Lu, H. Rui, C. Liang, L. Jiang, S. Zhao, and K. Li, “A method based on ga-cnn-lstm for daily tourist flow prediction at scenic spots,” Entropy, vol. 22, p. 261, 3 Feb. 2020. doi: 10.3390/e22030261.
R. Zhang, Z. Guo, Y. Meng, et al., “Comparison of arima and lstm in forecasting the incidence of hfmd combined and uncombined with exogenous meteorological variables in ningbo, china,” International Journal of Environmental Research and Public Health, vol. 18, p. 6174, 11 Jun. 2021. doi: 10.3390/ijerph18116174.
L. Pan, “Cryptocurrency price prediction based on arima, random forest and lstm algorithm,” BCP Business & Management, vol. 38, pp. 3396–3404, Mar. 2023. doi: 10.54691/bcpbm.v38i.4313.
N. Tripathy, S. Hota, D. Mishra, P. Satapathy, and S. K. Nayak, “Empirical forecasting analysis of bitcoin prices,” International journal of electrical and computer engineering systems, vol. 15, pp. 21–29, 1 Jan. 2024. doi: 10.32985/ijeces.15.1.3.
D. Hindarto, “Comparison of rnn architectures and non-rnn architectures in sentiment analysis,” Sinkron: jurnal dan penelitian teknik informatika, vol. 7, no. 4, pp. 2537–2546, 2023. doi: 10.33395/sinkron.v8i4.13048.
S. Ray, A. Lama, P. Mishra, T. Biswas, S. S. Das, and B. Gurung, “An arima-lstm model for predicting volatile agricultural price series with random forest technique,” Applied Soft Computing, vol. 149, p. 110939, Dec. 2023. doi: 10.1016/j.asoc.2023.110939.
DOI: https://doi.org/10.18860/cauchy.v10i2.35118
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fikrie Hartanta Sembiring, Regita Putri Permata, Rifdatun Ni'mah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








