Modelling Factors Affecting the Middle Income Trap in Indonesia Using Generalized Additive Models (GAM)

Dita Amelia, Suliyanto Suliyanto, Azizah Atsariyyah Zhafira, Aulia Ramadhanti, Billy Christandy Suyono, Firqa Aqila Hizbullah

Abstract


Indonesia is currently facing a significant challenge known as the Middle Income Trap (MIT), a condition where economic growth stagnates after reaching middle-income status, hindering progress toward becoming a high-income country. This study aims to identify and model the socio-economic factors influencing MIT at the provincial level in Indonesia during the 2020–2023 period. The Generalized Additive Model (GAM) is employed to estimate nonlinear relationships between predictors and the response variable while capturing complex patterns in panel data. GRDP per capita is used as an indicator of MIT, with six predictor variables: life expectancy, poverty rate, informal employment share, secondary education completion rate, food insecurity prevalence, and population density. The results showed that the best model was obtained based on the minimum GCV and AIC values of the Gaussian family with an identity link function and 5 knot points with the highest correlation of 99,9%. Five variables show nonlinear effects, while food insecurity exhibits a significant negative linear impact. The findings provide a valuable reference for designing inclusive and adaptive eco nomic policies based on each region’s socio-economic characteristics to mitigate MIT risks and also supports the achievement of Sustainable Development Goal (SDG) 8, which promotes decent work and sustained economic growth.

Keywords


Generalized Additive Model; Goodness of Fit; GRDP per capita; Middle Income Trap

Full Text:

PDF

References


[1] S.Maryanti, P. Widayat, and N. Lubis, “Economic transformation to get out of the middle income trap condition to reach indonesia gold 2045,” ADPEBI International Journal of Business and Social Science, vol. 3, no. 1, pp. 63–78, 2023.

[2] L. Glawe and H. Wagner, “The middle-income trap: Definitions, theories and countries con cerned—a literature survey,” Comparative Economic Studies, vol. 58, pp. 507–538, 2016.

[3] K. Metreau, E. Young, and S. G. Eapen, World bank country classifications by income level for 2024–2025, https://blogs.worldbank.org/en/opendata/world-bank-country-class ifications-by-income-level-for-2024-2025, [Online; accessed 23-March-2025], 2024.

[4] D. N. Prasetiani, H. F. Anindya, and A. S. Yoshe, “Strategi menghadapi middle income trap: Dampak hilirisasi mineral terhadap pendapatan negara indonesia era joko widodo,” Indonesia Foreign Policy Review, vol. 11, no. 1, 2024.

[5] V. Wanggai, M. Delanova, and Y. M. Yani, “Stabilitas ekonomi indonesia dalam pandemi covid 19 dan potensi indonesia untuk terjebak middle income trap,” Jurnal Academia Praja : Jurnal Magister Ilmu Pemerintahan, vol. 6, no. 1, pp. 146–165, 2023.

[6] V. Ratnasari, S. H. Audha, and A. T. R. Dani, “Statistical modeling to analyze factors affecting the middle-income trap in indonesia using panel data regression,” MethodsX, vol. 11, no. 102379, 2023.

[7] R.K.Dewi,D.E.Sari,andD.Wahyuningsih,“Analisismakroekonomisebagailangkahindonesia keluar dari middle income trap,” Inspire Journal: Economics and Development Analysis, vol. 1, no. 1, pp. 99–111, 2021.

[8] A.W.Malaleand M.A.Sutikno, “Analisis middle-income trap di indonesia,” Jurnal Bppk, vol. 7, no. 2, pp. 91–110, 2014. First Author 437 380 Middle Income Trap in Indonesia 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

[9] K.Larsen, “Gam: The predictive modeling silver bullet,” Multithreaded Stitch Fix, vol. 30, pp. 1 27, 2015.

[10] S. K. Sapra, “Generalized additive models in business and economics,” International Journal of Advanced Statistics and Probability, vol. 1, no. 3, pp. 64–81, 2013.

[11] N. Beck and S. Jackman, “Beyond linearity by default: Generalized additive models,” American Journal of Political Science, vol. 42, no. 2, pp. 596–627, 1998.

[12] H. Yozza, Siswadi, and B. Suharjo, “Analisis data longitudinal dengan metode regresi berstruktur pohon (kasus penyakit kencing manis),” Indonesian Journal of Statistics and Its Applications, vol. 6, no. 1, pp. 14–21, 2001.

[13] T. Hastie and R. Tibshirani, Generalized Additive Models. London: Chapman and Hall, 1990.

[14] L. Fahrmeir, T. Kneib, S. Lang, and B. D. Marx, Regression: Models, Methods and Applications. Berlin: Springer-Verlag, 2013.

[15] S. Wood, Generalized Additive Models: An Introduction with R. Boca Raton: Chapman & Hall, 2006.

[16] D. Gujarati and D. Porter, Basic Econometrics, 5th ed. New York: McGraw Hill Inc., 2009.

[17] J.M.Wooldridge,IntroductoryEconometrics:AModernApproach,8thed.Mason:South-Western Cengage Learning, 2016.

[18] S. N. Wood, Generalized Additive Models: An Introduction with R, 2nd ed. Boca Raton: CRC Press, 2017.




DOI: https://doi.org/10.18860/cauchy.v11i1.35119

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Dita Amelia, Suliyanto Suliyanto, Azizah Atsariyyah Zhafira, Aulia Ramadhanti, Billy Christandy Suyono, Firqa Aqila Hizbullah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.