Numerical Solution of the Time-Fractional Black-Scholes Equation and Its Application to European Option Pricing
Abstract
Keywords
Full Text:
PDFReferences
[1] L. Miljkovic, “The role of financial derivatives in financial risks management,” MEST Journal, vol. 11, no. 1, 2023. DOI: 10.12709/mest.11.11.01.09.
[2] M. Farahani, S. Babaei, and A. Esfahani, ““black-scholes-artificial neural network": A novel op287 tion pricing model,” International Journal of Financial, Accounting, and Management, vol. 5, no. 4, pp. 475–509, 2024. DOI: 10.35912/ijfam.v5i4.1684.
[3] E. Zahran and A. Bekir, “The paul-painlevé approach of the black scholes model and its exact and numerical solutions,” Journal of Science and Arts, vol. 24, no. 1, pp. 111–122, 2024. DOI: 291 10.46939/j.sci.arts-24.1-a10.
[4] J. Mohapatra, S. Santra, and H. Ramos, “Analytical and numerical solution for the time fractional black-scholes model under jump-diffusion,” Computational Economics, vol. 63, no. 5, pp. 1853–1878, 2024. DOI: 10.1007/s10614-023-10386-3.
[5] P. Stinga, “Fractional derivatives: Fourier, elephants, memory effects, viscoelastic materials, and anomalous diffusions,” Notices of the American Mathematical Society, vol. 70, no. 4, pp. 576–587, 2023. DOI: 10.1090/noti2663.
[6] F. Emmanuel and B. Teniola, “On the analysis of black–scholes equation for european option involving a fractional order with generalized two dimensional differential transform method,” Fractional Differential Calculus, vol. 11, pp. 161–173, 2022. DOI: 10.7153/fdc-2021-11-11.
[7] R. Luca, “Advances in boundary value problems for fractional differential equations,” Fractal and Fractional, vol. 7, no. 5, p. 406, 2023. DOI: 10.3390/fractalfract7050406.
[8] A. Owoyemi, I. Sumiati, E. Rusyaman, and S. Sukono, “Laplace decomposition method for solving fractional black-scholes european option pricing equation,” International Journal of Quantitative Research and Modeling, vol. 1, no. 4, pp. 194–207, 2020. DOI: 10.46336/ijqrm.v1i4.91.
[9] Z. Dere, G. Sobamowo, and A. de Oliveira Siqueira, “Analytical solutions of black-scholes partial differential equation of pricing for valuations of financial options using hybrid transformation methods,” The Journal of Engineering and Exact Sciences, vol. 8, no. 1, pp. 15 223–01i, 2022. DOI: 10.18540/jcecvl8iss1pp15223-01i.
[10] S. Saratha, G. Krishnan, M. Bagyalakshmi, and C. Lim, “Solving black–scholes equations using fractional generalized homotopy analysis method,” Computational and Applied Mathematics, vol. 39, pp. 1–35, 2020. DOI: 10.1007/s40314-020-01306-4.
[11] M. Mohamed, M. Yousif, and A. Hamza, “Solving nonlinear fractional partial differential equations using the elzaki transform method and the homotopy perturbation method,” Abstract and Applied Analysis, vol. 2022, no. 1, p.4743 234, 2022. DOI: 10.1155/2022/4743234.
[12] A. Nirmala and S. Kumbinarasaiah, “A robust numerical technique based on the chromatic polynomials for the european options regulated by the time-fractional black–scholes equation,” Journal of Umm Al-Qura University for Applied Sciences, pp. 1–18, 2024. DOI: 10.1007/s43994- 024-00193-3.
[13] M. Al-Safi, “Numerical solutions for the time fractional black-scholes model governing european option by using double integral transform decomposition method,” Results in Nonlinear Analysis, vol. 7, no. 2, pp. 64–78, 2024. DOI: 10.31838/rna/2024.07.02.007.
[14] J. Gao, “Numerical methods and computation in financial mathematics: Solving pdes, monte carlo simulations, and machine learning applications,” Theoretical and Natural Science, vol. 55, pp. 17–23, 2024. DOI: 10.54254/2753-8818/55/20240139.
[15] C. Murwaningtyas, S. Kartiko, H. Gunardi, and H. Suryawan, “Finite difference method for pricing of indonesian option under a mixed fractional brownian motion,” Mathematics and Statistics, vol. 8, no. 5, pp. 610–619, 2020. DOI: 10.13189/ms.2020.080516.
[16] A. Palbeno and N. Putri, “Analysis of put and call option pricing on bca stock using the black scholes model: Financial and risk management perspective,” International Journal of Global Operations Research, vol. 5, no. 3, pp. 176–183, 2024. DOI: 10.47194/ijgor.v5i3.299.
[17] H. Zhang, M. Zhang, F. Liu, and M. Shen, “Review of the fractional black-scholes equations and their solution techniques,” Fractal and Fractional, vol. 8, no. 2, p. 101, 2024. DOI: 10.3390/fractalfract8020101.
DOI: https://doi.org/10.18860/cauchy.v10i2.35248
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Elza Rahma Dihna

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






