Odd Harmonious Labeling of Lotus Flower Graphs

Fery Firmansah, Tasari Tasari, Muhammad Ridlo Yuwono

Abstract


The purpose of the research is to obtain the construction of a new graph class definition and the new graph class satisfies the properties of odd harmonious labeling. The research method consists of a preliminary stage, namely the stage of finding open problems, the stage of analyzing data for the formation of definitions and theorems, the stage of verifying the results of proving the theorems mathematically. The research results obtained three new graph class definitions, namely the definition of lotus flower graph, the definition of lotus flower graph with pendant, and the definition of lotus flower graph variation. Furthermore, it has been proven that lotus flower graph, lotus flower graph with pendant, and variation of lotus flower graph satisfy the properties of odd harmonious labeling so that they are odd harmonious.


Keywords


Lotus flower graph; Odd harmonious graph; Odd harmonious labeling; Variation of lotus flower graph;

Full Text:

PDF

References


[1] J. A. Gallian, “A Dynamic Survey of Graph Labeling,” Electron. J. Comb., vol. 6, no. 26, pp. 1–644, 2023, doi: 10.37236/11668.

[2] Z. H. Liang and Z. L. Bai, “On the odd harmonious graphs with applications,” J. Appl. Math. Comput., vol. 29, no. 1–2, pp. 105–116, Jan. 2009, doi: 10.1007/s12190-008-0101-0.

[3] M. E. Abdel-Aal, “Odd Harmonious Labelings of Cyclic Snakes,” Int. J. Appl. Graph Theory Wirel. Ad Hoc Networks Sens. Networks, vol. 5, no. 3, pp. 1–11, 2013, doi: 10.5121/jgraphoc.2013.5301.

[4] P. Jeyanthi, S. Philo, and K. A. Sugeng, “Odd harmonious labeling of some new families of graphs,” SUT J. Math., vol. 51, no. 2, pp. 181–193, 2015, doi: 10.1016/j.endm.2015.05.024.

[5] J. Renuka and P. Balaganesan, “Odd harmonious labeling of some classes of cycle related graphs,” Indian J. Public Heal. Res. Dev., vol. 9, no. 9, pp. 403–408, 2018, doi: 10.5958/0976-5506.2018.01032.X.

[6] J. J. Jesintha and K. E. H. Stanley, “The graph SSG(2) is odd graceful and odd harmonious,” Int. J. Comput. Aided Eng. Technol., vol. 14, no. 1, 2021, doi: 10.1504/IJCAET.2021.111639.

[7] S. S. Sarasvati, I. Halikin, and K. Wijaya, “Odd Harmonious Labeling of Pn C4 and Pn D2,” Indones. J. Comb., vol. 5, no. 2, 2021, doi: 10.19184/ijc.2021.5.2.5.

[8] S. Philo and P. Jeyanthi, “Odd Harmonious Labeling of Line and Disjoint Union of Graphs,” Chinese J. Math. Sci., vol. 1, no. 1, pp. 61–68, 2021.

[9] P. Jeyanthi and S. Philo, “Odd Harmonious Labeling of Some New Families of Graphs,” Electron. Notes Discret. Math., vol. 48, pp. 165–168, 2015, doi: 10.1016/j.endm.2015.05.024.

[10] P. Jeyanthi and S. Philo, “Odd harmonious labeling of some cycle related graphs,” Proyecciones, vol. 35, no. 1, pp. 85–98, Mar. 2016, doi: 10.4067/S0716-09172016000100006.

[11] P. Jeyanthi and S. Philo, “Odd Harmonious Labeling of Subdivided Shell Graphs,” Int. J. Comput. Sci. Eng. Open Access Res. Pap., no. 5, 2019, doi: 10.26438/ijcse/v7si5.7780.

[12] P. Jeyanthi and S. Philo, “Some Results On Odd Harmonious Labeling Of Graphs,” Bull. Int. Math. Virtual Inst., vol. 9, pp. 567–576, 2019, doi: 10.7251/BIMVI1903567J.

[13] P. Jeyanthi, S. Philo, and M. K. Siddiqui, “Odd harmonious labeling of super subdivision graphs,” Proyecciones, vol. 38, no. 1, pp. 1–11, 2019, doi: 10.4067/S0716-09172019000100001.

[14] P. Jeyanthi, S. Philo, and M. Z. Youssef, “Odd harmonious labeling of grid graphs,” Proyecciones, vol. 38, no. 3, pp. 412–416, 2019, doi: 10.22199/issn.0717-6279-2019-03-0027.

[15] P. Jeyanthi and S. Philo, “Odd harmonious labeling of step ladder graphs,” Util. Math., vol. 115, 2020.

[16] P. Jeyanthi and S. Philo, “New Results on Odd Harmonious Labeling Of Graphs,” Turkish World Math. Soc. J. Appl. Eng. Math., vol. 12, no. 4, 2022.

[17] D. H. Zala, Chotaliya, Narendra T. Chotaliya, and M. A. Chaurasiya, “Even odd Harmonious Labeling of Some Graphs,” Int. J. Innov. Technol. Explor. Eng., vol. 10, no. 4, pp. 149–151, 2021, doi: 10.35940/ijitee.d8513.0210421.

[18] E. Asumpta, Purwanto, and T. D. Chandra, “Odd Harmonious Labeling of Some Family of Snake Graphs,” in AIP Conference Proceedings, 2022. doi: 10.1063/5.0111278.

[19] H. M. Hafez, R. El-Shanawany, and A. A. E. Atik, “Odd harmonious labeling of the converse skew product of graphs,” Bull. Inst. Comb. its Appl., vol. 98, 2023.

[20] F. Firmansah, “Odd Harmonious Labeling on Some String Graph Classes,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 315–322, 2022, doi: 10.30598/barekengvol16iss1pp313-320.

[21] F. Firmansah, “The Odd Harmonious Labeling on Variation of the Double Quadrilateral Windmill Graphs,” J. Ilmu Dasar, vol. 18, no. 2, p. 109, Oct. 2017, doi: 10.19184/jid.v18i2.5648.

[22] F. Firmansah and M. R. Yuwono, “Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs,” Cauchy J. Mat. Murni dan Apl., vol. 4, no. 4, pp. 161–166, May 2017, doi: 10.18860/ca.v4i4.4043.

[23] F. Firmansah and Tasari, “Odd Harmonious Labeling on Edge Amalgamation from Double Quadrilateral Graphs,” Desimal J. Mat., vol. 3, no. 1, pp. 65–72, 2020, doi: 10.24042/djm.v3i1.5712.

[24] F. Firmansah, “Pelabelan Harmonis Ganjil pada Graf Ular Jaring Berlipat,” Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam, vol. 17, no. 1, p. 1, 2020, doi: 10.31851/sainmatika.v17i1.3182.

[25] F. Firmansah and W. Giyarti, “Odd harmonious labeling on the amalgamation of the generalized double quadrilateral windmill graph,” Desimal J. Mat., vol. 4, no. 3, pp. 373–378, 2021, doi: 10.24042/djm.

[26] F. Firmansah, “The Odd Harmonious Labeling of Layered Graphs,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 7, no. 2, 2023, doi: 10.31764/jtam.v7i2.12506.

[27] A. Lasim, I. Halikin, and K. Wijaya, “The Harmonious, Odd Harmonious, and Even Harmonious Labeling,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, 2022, doi: 10.30598/barekengvol16iss4pp1131-1138.

[28] Y. Venkataraman, J. Dhamayanthi Hayyath, I. Krishnaperumal, and V. E. Balas, “On Properly Odd Harmonious Labeling of Graphs,” in SISY 2022 - IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics, Proceedings, 2022. doi: 10.1109/SISY56759.2022.10036285.

[29] Abdel-Aal and Seoud, “Further Results on Odd Harmonious Graphs,” Int. J. Appl. Graph Theory Wirel. Ad Hoc Networks Sens. Networks, vol. 8, no. 3/4, pp. 1–14, 2016, doi: 10.5121/jgraphoc.2016.8401.

[30] G. A. Saputri, K. A. Sugeng, and D. Froncek, “The odd harmonious labeling of dumbbell and generalized prism graphs,” AKCE Int. J. Graphs Comb., vol. 10, no. 2, pp. 221–228, 2013.

[31] M. A. A. Seoud and H. M. Hafez, “Odd harmonious and strongly odd harmonious graphs,” Kyungpook Math. J., vol. 58, no. 4, pp. 747–759, 2018, doi: 10.5666/KMJ.2018.58.4.747.

[32] K. A. Sugeng, S. Surip, and R. Rismayati, “On odd harmonious labeling of m -shadow of cycle, gear with pendant and Shuriken graphs,” in AIP Conference Proceedings, 2019. doi: 10.1063/1.5139141.

[33] R. Govindarajan and V. Srividya, “On odd harmonious labelling of even cycles with parallel chords and dragons with parallel chords,” Int. J. Comput. Aided Eng. Technol., vol. 13, no. 4, pp. 409–424, 2020, doi: 10.1504/ijcaet.2020.10029299.

[34] F. Febriana and K. A. Sugeng, “Odd harmonious labeling on squid graph and double squid graph,” in Journal of Physics: Conference Series, 2020, pp. 1–5. doi: 10.1088/1742-6596/1538/1/012015.

[35] K. Mumtaz, P. John, and D. R. Silaban, “The odd harmonious labeling of matting graph,” in Journal of Physics: Conference Series, 2021, pp. 1–4. doi: 10.1088/1742-6596/1722/1/012050.

[36] E. A. Pramesti and Purwanto, “Odd harmonious labeling of Sn(m, r) graph,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1872/1/012006.

[37] D. A. Pujiwati, I. Halikin, and K. Wijaya, “Odd harmonious labeling of two graphs containing star,” in AIP Conference Proceedings, 2021. doi: 10.1063/5.0039644.

[38] D. Kolo, K. B. Ginting, and G. L. Putra, “Odd Harmonic Labeling on Cm,n ⊵e C4 Graph,” J. Difer., vol. 5, no. 1, 2023, doi: 10.35508/jd.v5i1.9824.

[39] F. Firmansah, “Pelabelan Harmonis Ganjil pada Graf Bunga Double Quadrilateral,” J. Ilm. Sains, vol. 20, no. 1, pp. 12–17, 2020, doi: 10.35799/jis.20.1.2020.27278.

[40] F. Firmansah, T. Tasari, and M. R. Yuwono, “Odd Harmonious Labeling of the Zinnia Flower Graphs,” J. Ilm. Sains, vol. 23, no. April, pp. 40–46, 2023, doi: 10.35799/jis.v23i1.46771.

[41] F. Firmansah, T. Tasari, and J. Sungkono, “Odd harmonious labeling on the union of flower graphs,” Desimal J. Mat., vol. 7, no. 3, pp. 567–582, 2024, doi: 10.24042/djm.




DOI: https://doi.org/10.18860/cauchy.v10i2.35272

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fery Firmansah, Tasari Tasari, Muhammad Ridlo Yuwono

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.