Development of a Fuzzy Logic Model for Tsunami Early Detection Using Tunami F1 on the Southern Coast of Yogyakarta International Airport, Jogja

Sadiyana Yaqutna Naqiya, Hanah Khoirunnisa, Galih Pradananta

Abstract


Tsunami disaster mitigation requires a reliable early warning system to reduce traumatic impacts and material losses. This study develops a fuzzy logic model for early tsunami detection by integrating wave height (SSH) and estimated tsunami arrival time (ETATSU) parameters. The model is combined with the TUNAMI F1 simulation, which considers seabed topography and fluid dynamics. Simulations were conducted on 36 earthquake scenarios on the southern coast near Yogyakarta International Airport (YIA). The results show that the model successfully classifies tsunami risks into three categories: alert, standby, and emergency, with an overall accuracy of 83.3%. Some scenarios showed invalid results at high magnitudes (Mw ≥ 8.5). This research improves the accuracy of tsunami early warning systems, potentially saving more lives and minimizing the impact of disasters.


Keywords


fuzzy logic; early warning tsunami; F1 TUNAMI model

Full Text:

PDF

References


Agayan, S. M., Bogoutdinov, S. R., Krasnoperov, R. I., Efremova, O. V., & Kamaev, D. A. (2022). Fuzzy Logic Methods in the Analysis of Tsunami Wave Dynamics Based on Sea Level Data. Pure and Applied Geophysics, 179(11), 4053–4062. https://doi.org/10.1007/s00024-022-03104-x

Alizadeh, M. J., & Nourani, V. (2024). Multivariate GRU and LSTM models for wave forecasting and hindcasting in the southern Caspian Sea. Ocean Engineering, 298, 117193. https://doi.org/10.1016/j.oceaneng.2024.117193

Aydın, B., Yağuzluk, S., & Açıkkar, M. (2024). Prediction of landslide tsunami run-up on a plane beach through feature selected MLP-based model. Journal of Ocean Engineering and Science, 9(3), 222–231. https://doi.org/10.1016/j.joes.2022.05.007

Bandangan, T. M., Pasau, G., & Tamuntuan, G. H. (2023). Risk Analysis and Tsunami Disaster Mapping in Mamuju, West Sulawesi Using TUNAMI-N2. Jurnal Ilmiah Sains, 130–139. https://doi.org/10.35799/jis.v23i2.48143

Boshenyatov, B. V. (2022). Investigation of Tsunami Waves in a Wave Flume: Experiment, Theory, Numerical Modeling. GeoHazards, 3(1), 125–143. https://doi.org/10.3390/geohazards3010007

Burwell, D., Tolkova, E., & Chawla, A. (2007). Diffusion and dispersion characterization of a numerical tsunami model. Ocean Modelling, 19(1–2), 10–30. https://doi.org/10.1016/j.ocemod.2007.05.003

Cesario, E., Giampà, S., Baglione, E., Cordrie, L., Selva, J., & Talia, D. (2023). Forecasting Tsunami Waves Using Regression Trees. 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), 1–7. https://doi.org/10.1109/ICT-DM58371.2023.10286955

Dao, M. H., Xu, H., Chan, E. S., & Tkalich, P. (2013). Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method. Natural Hazards and Earth System Sciences, 13(12), 3457–3467. https://doi.org/10.5194/nhess-13-3457-2013

Dermadi, Y., & Bandung, Y. (2019). Analysis of Numerical Model Result To Estimate Tsunami Damage Based On Inundation Data. 2019 International Symposium on Electronics and Smart Devices (ISESD), 1–6. https://doi.org/10.1109/ISESD.2019.8909587

Ghosh, A., & Dey, P. (2021). Flood Severity assessment of the coastal tract situated between Muriganga and Saptamukhi estuaries of Sundarban delta of India using Frequency Ratio (FR), Fuzzy Logic (FL), Logistic Regression (LR) and Random Forest (RF) models. Regional Studies in Marine Science, 42, 101624. https://doi.org/10.1016/j.rsma.2021.101624

HAMZAH, L., PUSPITO, N. T., & IMAMURA, F. (2000). Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25–43. https://doi.org/10.2328/jnds.22.25

Lee, Y. (2023). Causal Factors Analysis of runway excursion occurrences through Fuzzy Logic Modeling method. Transportation Engineering, 14, 100204. https://doi.org/10.1016/j.treng.2023.100204

Li, F., Li, L., Yu, F., Huang, K., & Switzer, A. D. (2024). Forward numerical investigation of potential tsunami deposits in the South China sea: A case study of Nan’ao Island. Marine and Petroleum Geology, 160, 106612. https://doi.org/10.1016/j.marpetgeo.2023.106612

Mishra, P., Usha, T., & Ramanamurthy, M. V. (2014). Evaluation of tsunami vulnerability along northeast coast of India. Continental Shelf Research, 79, 16–22. https://doi.org/10.1016/j.csr.2014.02.007

Mulia, I. E., Asano, T., & Nagayama, A. (2016). Real-time forecasting of near-field tsunami waveforms at coastal areas using a regularized extreme learning machine. Coastal Engineering, 109, 1–8. https://doi.org/10.1016/j.coastaleng.2015.11.010

Oishi, Y., Imamura, F., & Sugawara, D. (2015). Near‐field tsunami inundation forecast using the parallel TUNAMI‐N2 model: Application to the 2011 Tohoku‐Oki earthquake combined with source inversions. Geophysical Research Letters, 42(4), 1083–1091. https://doi.org/10.1002/2014GL062577

Pradananta, G., & Shofi Dana, B. (2025). Data-Driven Insights for Tourism Development in East Java Using Directed Graphs. Riemann: Research of Mathematics and Mathematics Education, 7(1), 20–35. https://doi.org/10.38114/reimann.v7i1.97

Pradananta, G., Tama, Y. B. W., Muchtadi-Alamsyah, I., Paryasto, M., & Yuliawan, F. (2025). Neural Network in Elliptic Curve Cryptography. In Interplay of Fractals and Complexity in Mathematical Modelling and Physical Patterns (pp. 307–321). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-58641-5_21

Qayyum, B., Ahmed, A., Ullah, I., & Shah, S. A. (2022). A Fuzzy-Logic Approach for Optimized and Cost-Effective Early Warning System for Tsunami Detection. Sustainability, 14(21), 14516. https://doi.org/10.3390/su142114516

Qayyum, B., Ahmed, A., Ullah, I., & Shah, S. A. (2022). A Fuzzy-Logic Approach for Optimized and Cost-Effective Early Warning System for Tsunami Detection. Sustainability, 14(21), 14516. https://doi.org/10.3390/su142114516

Qayyum, B., Ahmed, A., Ullah, I., & Shah, S. A. (2022). A Fuzzy-Logic Approach for Optimized and Cost-Effective Early Warning System for Tsunami Detection. Sustainability, 14(21), 14516. https://doi.org/10.3390/su142114516

Rashidi, A., Shomali, Z. H., Dutykh, D., & Keshavarz Faraj Khah, N. (2018). Evaluation of tsunami wave energy generated by earthquakes in the Makran subduction zone. Ocean Engineering, 165, 131–139. https://doi.org/10.1016/j.oceaneng.2018.07.027

Savastano, G., Komjathy, A., Verkhoglyadova, O., Mazzoni, A., Crespi, M., Wei, Y., & Mannucci, A. J. (2017). Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Scientific Reports, 7(1), 46607. https://doi.org/10.1038/srep46607

Setyaningsih, D. P., Sutiono, H. E. C. P., Paramanandi, A. R. G., Khasanah, E. U., Wahyuni, T., Jati, B. A. E. K., Akbar, M. F. Al, Widyatmanti, W., & Wibowo, T. W. (2023). TSUNAMI HAZARD MODELING IN THE COASTAL AREA OF KULON PROGO REGENCY. International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(2), 184. https://doi.org/10.30536/j.ijreses.2022.v19.a3822

Sugeno, M., & Kang, G. . (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems, 28(1), 15–33. https://doi.org/10.1016/0165-0114(88)90113-3

Tandel, P., Patel, H., & Patel, T. (2022). Tsunami wave propagation model: A fractional approach. Journal of Ocean Engineering and Science, 7(6), 509–520. https://doi.org/10.1016/j.joes.2021.10.004

Wells, D. L., & Coppersmith, Kevin, J. (1994). New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

Xie, P., & Du, Y. (2023). Tsunami wave generation in Navier–Stokes solver and the effect of leading trough on wave run-up. Coastal Engineering, 182, 104293. https://doi.org/10.1016/j.coastaleng.2023.104293

Xu, H., & Wu, H. (2023). Accurate tsunami wave prediction using long short-term memory based neural networks. Ocean Modelling, 186, 102259. https://doi.org/10.1016/j.ocemod.2023.102259

Zhang, Z., Zhang, W., Zhai, Z. J., & Chen, Q. Y. (2007). Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2—Comparison with Experimental Data from Literature. HVAC&R Research, 13(6), 871–886. https://doi.org/10.1080/10789669.2007.10391460

Zhao, E., Wu, Y., Jiang, F., Wang, Y., Zhang, Z., & Nie, C. (2024). Numerical investigation on the influence of the complete tsunami-like wave on the tandem pipeline. Ocean Engineering, 294, 116697. https://doi.org/10.1016/j.oceaneng.2024.116697




DOI: https://doi.org/10.18860/cauchy.v10i2.35416

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sadiyana Yaqutna Naqiya, Hanah Khoirunnisa, Galih Pradananta

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.