Analysis of Geographically Weighted Logistic Regression Models with A Bisquare Weighting Matrix on Poverty Status in West Java

Toha Saifudin, Nur Chamidah, Najwa Khoir Aldawiyah, Citrawani Marthabakti, Aulia Ramadhanti, Muhammad Hafidzuddin Nahar, Naufal Muzakki

Abstract


This research addresses the first Sustainable Development Goal and aims to analyze poverty status in West Java Province, which has the second highest number of poor people in Indonesia. The study employs Geographically Weighted Logistic Regression (GWLR) and compares it with global logistic regression. Influential variables include GDP, unemployment, population density, access to safe water, and roof type (bamboo/wood). Results show that 55.6% of regions are classified as poor, with the GWLR model using a Fixed Bisquare kernel achieving 81.4% accuracy, outperforming global logistic regression at 66.7%. Significant variables vary by region: unemployment rate in Bogor, Depok, and Bekasi; population density in Bekasi, Karawang, and Purwakarta; water access in Sukabumi; and roof type in Indramayu and Bogor. These spatial variations suggest that poverty reduction requires a region-specific approach. Consequently, policies should be formulated considering the priorities and characteristics of each region in West Java Province.

Keywords


Bisquare Weeighting Matrix; Geographically Weighted Logistic Regression; Poverty; West Java

Full Text:

PDF

References


[1] BPS Jawa Barat, Persentase Penduduk Miskin Maret 2023, 2023. Available online.

[2] A. K. D. Permata and R. Patrianom, “Jurnal of Development Economic and Digitalization,” 281 Jurnal Of Development Economic And Digitalization, vol. 2, no. 1, pp. 56–76, 2023.

[3] Hidayat, “Penanggulangan Kemiskinan di Jawa Barat,” Jurnal Ilmiah Magister Ilmu 283 Administrasi (JIMIA), no. 2, pp. 66–72, 2017. Available online.

[4] N. Pratiwi, S. Suyitno, and M. Siringoringo, “Penerapan Model Geographically Weighted 285 Logistic Regression Pada Data Status Kesejahteraan Masyarakat di Kalimantan Tahun 286 2017,” Eksponensial, vol. 11, no. 1, p. 83, 2021. doi: 10.30872/eksponensial.v11i1.648

[5] A. Miranda, S. Suyitno, and M. Fauziyah, “Modelling the Probability of River Water 288 Pollution Using Geographically Weighted Logistic Regression Model ( Case Study : River 289 Water DO Data in East Kalimantan ) Pemodelan Peluang Pencemaran Air Sungai ( Studi 290 Kasus : Data DO Air Sungai di Kalimantan Tim,” vol. 21, no. 2, pp. 408–430, 2025. doi: 291 10.20956/j.v21i2.40346

[6] N. A. Solekha and M. F. Qudratullah, “Pemodelan Geographically Weighted Logistic 293 Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi 294 NTT,” Jambura Journal of Mathematics, vol. 4, no. 1, pp. 17–32, 2022. doi: 10.34312/jj 295 om.v4i1.12452

[7] K. Rispanzira, A. D. Yanuar, and Nuramaliyah, “Pengaruh Produk Domestik Regional 297 Bruto Atas Dasar Kepadatan Penduduk terhadap Persentase Kemiskinan,” Acmatics 298 Journal: Actuarial, Mathematics, and Statistics Journal., vol. 1, pp. 33–38, 2024.

[8] H. S. Putra and N. Rianto, “Pengaruh Akses Air Bersih Terhadap Kemiskinan Di Indonesia: 300 Pengujian Data Rumah Tangga,” Jurnal Sosial Ekonomi Pekerjaan Umum, vol. 9, no. 1, 301 pp. 65–76, 2017.

[9] N. Nurhasanah, W. Widiarti, D. E. Nurvazly, and M. Usman, “Penerapan Model Geograph303 ically Weighted Logistic Regression dengan Fungsi Pembobot Adaptive Gaussian Kernel 304 pada Data Kemiskinan,” Jambura Journal of Mathematics, vol. 6, no. 2, pp. 204–211, 2024. 305 doi: 10.37905/jjom.v6i2.26504

[10] G. A. Aprianti and E. Widodo, “Analisis Geographycally Weighted Regression Pada Data 307 Kemiskinan Provinsi Jawa Tengah,” Prosiding SI MaNIs, vol. 1, no. No.1, pp. 1–18, 2017. 308 Available online.

[11] N. M. Zafri and A. Khan, “Using geographically weighted logistic regression (GWLR) for 310 pedestrian crash severity modeling: Exploring spatially varying relationships with natural 311 and built environment factors,” IATSS Research, vol. 47, no. 3, pp. 325–334, Oct. 2023. 312 doi: 10.1016/j.iatssr.2023.07.004 Available online.

[12] D. W. Hosmer, S. Lemeshow, and R. X. Strudivant, Applied Logistic Regression, 3rd ed. 314 New Jersey: Jon Wiley&Sons, Inc., 2013.

[13] S. Andriani, “Uji Park Dan Uji Breusch Pagan Godfrey Dalam Pendeteksian Heteroskedastisi316 tas Pada Analisis Regresi,” Al-Jabar : Jurnal Pendidikan Matematika, vol. 8, no. 1, pp. 63– 317 72, 2017. doi: 10.24042/ajpm.v8i1.1014

[14] R. Nasri, N. Gusriani, and N. Anggriani, “Model Geographically Weighted Panel Regression 319 (GWPR) untuk Data Kemiskinan di Provinsi Jawa Barat Tahun 2019-2021,” Jurnal 320 Diferensial, vol. 5, no. 2, 2023. doi: https://doi.org/10.35508/jd.v5i2.12213

[15] M. Kumari, K. Sarma, and R. Sharma, “Using Moran’s I and GIS to study the spatial 322 pattern of land surface temperature in relation to land use/cover around a thermal power 323 plant in Singrauli district, Madhya Pradesh, India,” Remote Sensing Applications: Society 324 and Environment, vol. 15, no. 100239, 2019. doi: https://doi.org/10.1016/j.rsase.20 325 19.100239

[16] I. M. Nur and M. Al Haris, “Geographically Weighted Logistic Regression (GWLR) with 327 Adaptive Gaussian Weighting Function in Human Development Index (HDI) in The Province 328 of Central Java,” Journal of Physics: Conference Series, vol. 1776, no. 1, p. 012 048, Feb. 329 2021. doi: 10.1088/1742-6596/1776/1/012048 Available online.

[17] R. Wahyudi, Y. Fauzi, and J. Rizal, “Analisis kemiskinan ekstrem provinsi bengkulu 331 menggunakan metode geographically weighted regression (gwr) dengan pembobot adaptive 332 gaussian kernel dan adaptive bi-square,” Journal of Mathematics UNP, vol. 8, no. 2, 333 pp. 134–149, 2023

[18] A. S. Fotheringham and M. C. Chris Brunsdon, Geographically Weighted Regression: The 335 Analysis of Spatially Varying Relationship. 2003.

[19] H. Akaike, A New Look at the Statistical Model Identification. Springer New York, NY, 337 1974. doi: https://doi.org/10.1007/978-1-4612-1694-0_16

[20] G. Schwarzer, W. Vach, and M. Schumacher, “On the misuses of artificial neural networks 339 for prognostic and diagnostic classification in oncology,” Statistics in Medicine, vol. 19, 340 no. 4, pp. 541–561, Feb. 2000. doi: 10.1002/(SICI)1097-0258(20000229)19:4<541:: 341 AID-SIM355>3.0.CO;2-V Available online.

[21] N. Arifin and Y. Hendriyani, “PDRB, IPM, dan Kemiskinan di Indonesia,” Finansha: 343 Journal of Sharia Financial Management, vol. 3, no. 2, pp. 87–103, Dec. 2022. doi: 344 10.15575/fjsfm.v3i2.20947 Available online.

[22] N. W. M. C. Puteri and N. N. R. Suasih, “Pengaruh PDRB Per Kapita, Pengangguran, 346 Keluhan Kesehatan Dan Pertumbuhan Penduduk Terhadap Tingkat Kemiskinan Pada 347 Kabupaten/Kota Di Provinsi Bali,” E-Jurnal Ekonomi Pembangunan Universitas Udayana, 348 vol. 12, no. 12, Nov. 2023. doi: 10.24843/10.24843/EEP.2023.v12.i12.p03 Available 349 online.

[23] M. G. López, G. C. Quesada, and B. Montano, “Untangling the vicious cycle around water 351 and poverty,” Sustainable Development, vol. 32, no. 3, pp. 1845–1860, Jun. 2024. doi: 352 10.1002/sd.2753 Available online.

[24] A. D. Puteri and H. B. Notobroto, “Indikator Karakteristik Fisik Rumah Dominan dalam 354 Penentuan Status Kemiskinan untuk Program Rehab Rumah tidak Layak Huni di Kabu355 paten Sidoarjo,” Jurnal Biometrika dan Kependudukan, vol. 5, no. 2, p. 107, Sep. 2017. 356 doi: 10.20473/jbk.v5i2.2016.107-116 Available online.

[25] M. Yulianti, “Pengaruh dampak pengangguran terhadap tingkat kemiskinan masyarakat 358 di kabupaten pasaman,” Jurnal Multidisiplin Inovatif, vol. 8, no. 12, pp. 55–58, 2024.

[26] Munira and H. Juliansyah, “Analisis Pengaruh Kepadatan Penduduk, Pengeluaran Perkapita 360 Dan Tingkat Pengangguran Terbuka Terhadap Penduduk Miskin Di Provinsi Aceh Tahun 361 2000-2019,” Jurnal Ekonomi Regional Unimal, vol. 5, no. 1, p. 11, Jul. 2022. doi: 10.2910 362 3/jeru.v5i1.7916 Available online.




DOI: https://doi.org/10.18860/cauchy.v10i2.36315

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Toha Saifudin, Nur Chamidah, Najwa Khoir Aldawiyah, Citrawani Marthabakti, Aulia Ramadhanti, Muhammad Hafidzuddin Nahar, Naufal Muzakki

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.