Optimal Control of Tungro Disease Spread by Considering Growth Phase and Roguing Control
Abstract
Full Text:
PDFReferences
[1] R. Amelia, N. Anggriani, A. K. Supriatna, and N. Istifadah, “Analysis and optimal control of the tungro virus disease spread model in rice plants by considering the characteristics of the virus, roguing, and pesticides,” Mathematics, vol. 11, no. 5, p. 1151, 2023. doi: 10.3390/math11051151.
[2] N. Hashim et al., “Smart farming for sustainable rice production: An insight into application, challenges, and prospects,” Rice Science, vol. 31, no. 1, pp. 47–61, 2024. doi: 10.1016/j.rsci.2023.08.004.
[3] S. R. Dey, R. Das, and M. De, “A brief review on the present status of rice tungro disease: Types of viruses, vectors, occurrence, symptoms, control, and resistant rice varieties,” International Journal of Advanced Life Science Research, vol. 7, pp. 15–23, 2024. doi: 10.31632/ijalsr.2024.v07i03.002.
[4] S. Rahayu, S. Hannum, L. Cristin, and D. M. Tampubolon, “Detection of rice tungro bacilliform virus (RTBV) causes of tungro disease in rice plant (Oryza sativa L.) in Langkat, North Sumatra, using the PCR (polymerase chain reaction) technique,” IOP Conference Series: Earth and Environmental Science, vol. 1352, p. 012043, May 2024. doi: 10.1088/1755-1315/1352/1/012043.
[5] G. Kumar and I. Dasgupta, “The titers of rice tungro bacilliform virus dictate the expression levels of genes related to cell wall dynamics in rice plants affected by tungro disease,” Archives of Virology, vol. 166, no. 5, pp. 1325–1336, 2021. doi: 10.1007/s00705-021-05006-0.
[6] N. Anggriani, R. Amelia, N. Istifadah, and D. Arumi, “Optimal control of plant disease model with roguing, replanting, curative, and preventive treatment,” Journal of Physics: Conference Series, vol. 1657, p. 012050, Oct. 2020. doi: 10.1088/1742-6596/1657/1/012050.
[7] D. Suandi et al., “Investigating the efficacy of insecticides in controlling the spread of tungro virus in rice plants: A mathematical modeling approach,” Communications in Mathematical Biology and Neuroscience, vol. 2025, 2025. doi: 10.28919/cmbn/9225.
[8] W. Suryaningrat, N. Anggriani, A. K. Supriatna, and N. Istifadah, “The optimal control of rice tungro disease with insecticide and biological agent,” AIP Conference Proceedings, vol. 2264, p. 040002, Sep. 2020. doi: 10.1063/5.0023569.
[9] T. Chikore, F. Nyabadza, and K. J. White, “Exploring the impact of nonlinearities in police recruitment and criminal capture rates: A population dynamics approach,” Mathematics, vol. 11, no. 7, p. 1669, 2023. doi: 10.3390/math11071669.
[10] I. Pratisno, A. Widarti, Y. Tiyanto, and S. Nurulita, “Current incidence of tungro disease in West Java and South Sulawesi,” IOP Conference Series: Earth and Environmental Science, vol. 1528, p. 012019, Jul. 2025. doi: 10.1088/1755-1315/1528/1/012019.
[11] Y. Yang and H. Liu, “Sensitivity analysis of disease-information coupling propagation dynamics model parameters,” PLoS One, vol. 17, no. 3, e0265273, 2022. doi: 10.1371/journal.pone.0265273.
[12] R. Resmawan and L. Yahya, “Sensitivity analysis of the mathematical model of coronavirus disease (COVID-19) transmission,” CAUCHY: Journal of Pure and Applied Mathematics, vol. 6, no. 2, pp. 91–99, 2020. doi: 10.18860/ca.v6i2.9165.
[13] N. Anggriani et al., “The effect of insecticide on the transmission of tungro disease in the vegetative and generative phases,” Communications in Mathematical Biology and Neuroscience, vol. 2024, 2024. doi: 10.28919/cmbn/8433.
[14] F. Ndaïrou, I. Area, J. J. Nieto, and D. F. Torres, “Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan,” Chaos, Solitons & Fractals, vol. 135, p. 109846, 2020. doi: 10.1016/j.chaos.2020.109846.
[15] C. E. Madubueze, S. Dachollom, and I. O. Onwubuya, “Controlling the spread of COVID-19: Optimal control analysis,” Computational and Mathematical Methods in Medicine, vol. 2020, p. 6862516, 2020. doi: 10.1155/2020/6862516.
[16] S. O. Adewale, I. A. Olopade, S. O. Ajao, and G. A. Adeniran, “Optimal control analysis of the dynamical spread of measles,” International Journal of Research, vol. 4, no. 5, pp. 169–188, 2016. doi: 10.29121/granthaalayah.v4.i5.2016.2692.
[17] R. Amelia, N. Anggriani, A. K. Supriatna, and N. Istifadah, “Mathematical model for analyzing the dynamics of tungro virus disease in rice: A systematic literature review,” Mathematics, vol. 10, no. 16, p. 2944, 2022. doi: 10.3390/math10162944.
[18] D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlési, and N. André, “Computational oncology—mathematical modeling of drug regimens for precision medicine,” Nature Reviews Clinical Oncology, vol. 13, no. 4, pp. 242–254, 2016. doi: 10.1038/nrclinonc.2015.204.
[19] H. F. Huo, R. Chen, and X. Y. Wang, “Modeling and stability of the HIV/AIDS epidemic model with treatment,” Applied Mathematical Modelling, vol. 40, no. 13–14, pp. 6550–6559, 2016. doi: 10.1016/j.apm.2016.01.054.
[20] R. Amelia, N. Anggriani, A. K. Supriatna, and N. Istifadah, “Dynamic analysis and optimal control of the spread of tungro virus disease in rice plants considering refugia planting and pesticide application,” Mathematics, vol. 12, no. 24, p. 3979, 2024. doi: 10.3390/math12243979.
[21] A. Maryati, N. Anggriani, and E. Carnia, “Stability analysis of tungro disease spread model in rice plant using matrix method,” BAREKENG Journal of Mathematics and Applications, vol. 16, no. 1, pp. 217–228, 2022. doi: 10.30598/barekengvol16iss1pp215-226.
[22] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
[23] L. Perko, Differential Equations and Dynamical Systems, 3rd ed. New York: Springer, 1991.
[24] P. van den Driessche and J. Watmough, “Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1–2, pp. 29–48, 2002. doi: 10.1016/S0025-5564(02)00108-6.
[25] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and computation of the basic reproduction ratio in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990.
[26] O. Diekmann, J. A. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” Journal of the Royal Society Interface, vol. 7, no. 47, pp. 873–885, 2010. doi: 10.1098/rsif.2009.0386.
[27] S. Marino, I. B. Hogue, C. Ray, and D. E. Kirschner, “A methodology for performing global uncertainty and sensitivity analysis in systems biology,” Journal of Theoretical Biology, vol. 254, no. 1, pp. 178–196, 2008. doi: 10.1016/j.jtbi.2008.04.011.
[28] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2007. doi: 10.1201/9781420011418.
[29] F. Agusto and M. Khan, “Optimal control strategies for dengue transmission in Pakistan,” Mathematical Biosciences, vol. 304, pp. 1–15, 2018. doi: 10.1016/j.mbs.2018.09.007.
DOI: https://doi.org/10.18860/cauchy.v10i2.36776
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rika Amelia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.






