Modeling Fuzzy Geographically Weighted Clustering with Flower Pollination Algorithm for Spatial Optimization and Clustering

Friansyah Gani, Henny Pramoedyo, Achmad Efendi

Abstract


This study aims to analyze the clustering of districts/cities in East Nusa Tenggara Province (NTT) using the Fuzzy Geographically Weighted Clustering method optimized through the Flower Pollination Algorithm (FGWC-FPA). The data consist of eight health and sanitation indicators for 2024. The analysis produced two clusters with distinct characteristics. Cluster 1 is dominated by areas with relatively higher rates of complementary feeding and good BCG immunization coverage but still shows a higher proportion of low birth weight (LBW) infants and limited access to drinking water and sanitation. Meanwhile, Cluster 2 demonstrates significant advantages in access to proper drinking water (90.37%) and proper sanitation (83.19%), as well as more optimal Hepatitis B immunization coverage. Evaluation of cluster validity using Classification Entropy (CE) and the Separation Index (SI) shows that the best configuration is obtained at m = 1.5 with c = 2, yielding the lowest CE value (0.584872) and reasonably good cluster separation (SI = 1.069092). Thus, the FGWC-FPA method is capable of producing optimal cluster partitioning and can serve as a basis for formulating more targeted health intervention strategies in NTT.

Keywords


FGWC; FPA; FGWC-FPA; Stunting

Full Text:

PDF

References


[1] M.I.MashurandY.Salim,“Analisisperformametodeclusterk-meanspadadatasetocular diseaserecognition,”IndonesianJournal ofDataandScience,vol.3,no.1,pp.35–46, 2022.

[2]D.Valkenborg,A.-.Rousseau,M.Geubbelmans,andT.Burzykowski, “Unsupervised learning, ”American Journal of Orthodontics and Dentofacial Orthopedics,vol.163,no.6, pp.877–882,2023.

[3] F.Gani, H.Panigoro, S.Mahmud, E.Rahmi, S.Nasib, and L.Nashar, “Implementation 285 ofk-nearest neighbor algorithm on density-based spatial clustering application with noise method on stunting clustering, ”Jurnal Diferensial, vol.6, no.2, pp.170–178,2024.doi: 10.35508/jd.v6i2.16278.

[4] S. A. B. Telaumbanua, F. Setiadi, and S. Nurjanah, “Analisis clustering menggunakan metode enhanced fuzzy c-means clustering dengan algoritma rock pada student performance dataset,” bit-Tech, vol. 7, no. 3, pp. 984–994, 2025

[5] N. Thamrin and A. W. Wijayanto, “Comparison of soft and hard clustering: A case study on welfare level in cities on java island,” Indonesian Journal of Statistics and Its Applications, vol. 5, no. 1, pp. 141–160, 2021. doi: 10.29244/ijsa.v5i1p141-160.

[6] J. Saputra, M. I. Al Aksha, and L. Maryani, “Analisis perbandingan efektivitas metode fuzzy c-means dan k-means dalam mengelompokkan buku berdasarkan frekuensi peminjaman di perpustakaan smkn 1 mandau,” Explore, vol. 14, no. 2, pp. 87–92, 2024.

[7] A. Anisa, T. Yulianto, K. Kuzairi, and F. Faisol, “Pengelompokkan kemiskinan di provinsi jawa timur menggunakan fuzzy geographycally weighted clustering,” Zeta-Math Journal, vol. 9, no. 2, pp. 105–114, 2024.

[8] E. T. Maliku, Rais, and M. Fajri, “Pengelompokan kabupaten/kota di provinsi sulawesi tengah berdasarkan indikator pembangunan ekonomi menggunakan fuzzy geographically weighted clustering,” Jurnal Ilmiah Matematika dan Terapan, vol. 19, no. 1, pp. 130–143, 2022. doi: 10.22487/2540766X.2022.v19.i1.15868.

[9] J. Fauziah, K. D. Trisnawati, K. P. S. Rini, and S. U. Putri, “Stunting: Penyebab, gejala, dan pencegahan,” Jurnal Parenting dan Anak, vol. 1, no. 2, pp. 11–11, 2024.

[10] A. Ahmad, A. Nur, T. Muliadi, N. Marissa, I. Naufal, M. Marisa, J. Junaidi, F. Reynaldi, E. Fitriyaningsih, and H. Husnah, “Factors associated with stunting among children 0-23 months in aceh: A cross-sectional study using ssgi 2021,” AcTion: Aceh Nutrition Journal, vol. 9, no. 3, pp. 538–547, 2024.

[11] A. Kurniawan and F. Fairus, “Analisis regresi linear berganda untuk mengetahui faktor yang mempengaruhi kejadian stunting di kota langsa,” Jurnal Pembangunan dan Kebijakan Publik, vol. 16, no. 1, pp. 1–9, 2025.

[12] R. Gemilastari, L. Zeffira, R. Malik, and V. T. Septiana, “Karakteristik bayi dengan berat badan lahir rendah (bblr),” Scientific Journal, vol. 3, no. 1, pp. 16–26, 2024.

[13] D. S. Sarimin, E. Yulidar, Y. Yulianita, R. Yuningsih, and F. Shahab, “Faktor-faktor yang berhubungan dengan ketidaklengkapan imunisasi dasar pada bayi,” Ensiklopedia of Journal, vol. 6, no. 3, pp. 71–76, 2024.

[14] R. Masitah, “Peningkatan ketepatan jenis, porsi, dan tekstur pemberian mpasi melalui kon seling dan penyuluhan gizi,” Jurnal Pengabdian dan Pengembangan Masyarakat Indonesia, vol. 4, no. 1, pp. 76–83, 2025.

[15] H. M. Hasanah, D. Fitria, D. Permana, and Z. Martha, “Fuzzy geographically weighted clustering method for grouping provinces in indonesia based on welfare indicators aspects of information and communication technology (ict),” UNP Journal of Statistics and Data Science, vol. 1, no. 5, pp. 426–433, 2023.

[16] S. Mashfufah, I. M. Nur, and M. Y. Darsyah, “Fuzzy geographically weighted clustering dengan gravitational search algorithm pada kasus penyandang masalah kesejahteraan sosial di provinsi jawa tengah: Fuzzy geographically weighted clustering dengan gravitational search algorithm pada kasus penyandang masalah kesejahteraan sosial di provinsi jawa tengah,” Jurnal Litbang Edusaintech, vol. 2, no. 1, pp. 27–36, 2021.

[17] M. Abdel-Basset and L. A. Shawky, “Flower pollination algorithm: A comprehensive review,” Artificial Intelligence Review, vol. 52, no. 4, pp. 2533–2557, 2019.

[18] E. Luthfi and A. W. Wijayanto, “Analisis perbandingan metode hirearchical, k-means, dan k-medoids clustering dalam pengelompokkan indeks pembangunan manusia indonesia,” Inovasi: Jurnal Ekonomi, Keuangan, dan Manajemen, vol. 17, no. 4, pp. 761–773, 2021.

[19] J. Navarro, F. Buono, and J. M. Arevalillo, “A new separation index and classification techniques based on shannon entropy,” Methodology and Computing in Applied Probability, vol. 25, no. 4, p. 78, 2023.

[20] R. Kalam and C. Thomas, “Detection and classification of breast cancer in mammogram images using entropy-based fuzzy c-means clustering and rmcnn,” Multimedia Tools and Applications, vol. 83, no. 24, pp. 64853–64878, 2024




DOI: https://doi.org/10.18860/cauchy.v10i2.36800

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Friansyah Gani, Henny Pramoedyo, Achmad Efendi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.