Function-Theoretic Operator Norm Inequalities: A Kosaki-type Generalization to Symmetric Probability Weights
Abstract
Keywords
Full Text:
PDFReferences
[1] A. McIntosh, “Heinz inequalities and perturbation of spectral families,” Macquarie Mathematical Reports, vol. 79-0006, 1979.
[2] R. Bhatia and C. Davies, “More matrix forms of the arithmetic–geometric mean inequality,” SIAM Journal on Matrix Analysis and Applications, vol. 14, no. 1, pp. 132–136, 1993. doi: 10.1137/0614012.
[3] X. Zhan, “Inequalities for unitarily invariant norms,” SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 2, pp. 466–470, 1998.
[4] F. Hiai and H. Kosaki, “Comparison of various means for operators,” Journal of Functional Analysis, vol. 163, no. 2, pp. 300–323, 1999.
[5] F. Hiai and H. Kosaki, “Means for matrices and comparison of their norms,” Indiana University Mathematics Journal, vol. 48, no. 3, pp. 899–936, 1999.
[6] R. Bhatia, “Infinitely divisible matrices,” The American Mathematical Monthly, vol. 113, no. 3, pp. 221–235, 2006. doi: 10.1080/00029890.2006.11920300.
[7] X. Xiao, F. Zhang, Y. Cao, and C. Zhang, “Some matrix inequalities related to norm and singular values,” AIMS Mathematics, vol. 9, no. 2, pp. 4205–4210, 2023. doi: 10.3934/math.2024207.
[8] H. Kosaki, “On infinite divisibility of positive definite functions arising from operator means,” Journal of Functional Analysis, vol. 254, no. 1, pp. 84–108, 2008. doi: 10.1016/j.jfa.2007.09.021.
[9] H. Kosaki, “A certain generalization of the Heinz inequality for positive operators,” International Journal of Mathematics, vol. 27, no. 2, p. 16500087, 2016. doi: 10.1142/S0129167X16500087.
[10] M. Bakherad, “Unitarily invariant norm inequalities involving G1 operators,” Communications of the Korean Mathematical Society, vol. 33, no. 3, pp. 889–899, 2018. doi: 10.4134/CKMS.c170329.
[11] T. Hayashi, “On a norm inequality for a positive block-matrix,” Linear Algebra and its Applications, vol. 576, pp. 273–284, 2019. doi: 10.1016/j.laa.2018.12.027.
[12] M. W. Alomari, “Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces,” Advances in Pure and Applied Mathematics, vol. 10, no. 4, pp. 313–324, 2019. doi: 10.1515/apam-2018-0154.
[13] M. Buhmann and Y. Xu, “Positive definite functions on a regular domain,” IMA Journal of Numerical Analysis, vol. 45, pp. 2824–2843, 2025. doi: 10.1093/imanum/drae074.
[14] P. Massey, D. Stojanoff, and S. Zarate, “Norm inequalities for the spectral spread of Hermitian operators,” Mathematische Nachrichten, vol. 296, no. 9, pp. 4335–4356, 2023. doi: 10.1002/mana.202200350.
[15] A. Al-Natoor, S. Benzamia, and F. Kittaneh, “Unitarily invariant norm inequalities for positive semidefinite matrices,” Linear Algebra and its Applications, vol. 633, pp. 303–315, 2022. doi: 10.1016/j.laa.2021.10.012.
[16] Z. Lin, H. G. Müller, and B. U. Park, “Additive models for symmetric positive-definite matrices and Lie groups,” Biometrika, vol. 110, no. 2, pp. 361–379, 2023. doi: 10.1093/biomet/asac055.
[17] A. Chavez, “Norms on complex matrices induced by random vectors II: Extension of weakly unitarily invariant norms,” Canadian Mathematical Bulletin, vol. 67, no. 2, pp. 447–457, 2023. doi: 10.4153/S0008439523000875.
[18] S. Chen and H. Hu, “Unitarily invariant norms on dual quaternion matrices,” Pacific Journal of Optimization, vol. 20, no. 2, pp. 371–387, 2024. (Online). Available: http://www.yokohamapublishers.jp/online-p/PJO/vol20/pjov20n2p371.pdf
[19] I. N. Albania and M. Nagisa, “Some families of operator norm inequalities,” Linear Algebra and its Applications, vol. 534, pp. 102–121, 2017. doi: 10.1016/j.laa.2017.06.030.
DOI: https://doi.org/10.18860/cauchy.v10i2.36905
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Imam Nugraha Albania

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








