Mathematical Modeling of the Decoy Effect to Shift Consumer Preferences in House-Type Purchases

Sentot Eko Baskoro, I Nyoman Sutapa, Suhartono Suhartono

Abstract


This study discusses the design of a Mechanism Design-based Decoy Effect Mathematical Model to shift consumer preferences from small-type houses to large-type houses. The model uses area-per-price utility that combines the ratio of building area and land area to price, and formulates the optimization of decoy attributes so that large-type houses dominate but remain close as comparators. The model is explained with a case study, namely large houses are set at a price of  IDR, land area of  m², and building area of  m²; small houses are priced at  million IDR, building area of  m², and land area of  m²; then two types of decoy house prices are set, namely  million and  million IDR. With the ratio of building and land area to price, namely  and  as well as  and , large-type houses excel in terms of building-per-price and are equivalent in terms of land-per-price. Asymmetric decoy houses can be constructed by selecting  and . The results of the mathematical model calculations obtained the closed solutions 'adjacent' and 'strong' for the two types of prices. Sensitivity analysis shows that the target margin advantage increases linearly with  and the context scale , above the base margin . This model provides an operational and easily auditable mechanism in practice.


Keywords


attraction effect; decoy house; mechanism design; house type selection

Full Text:

PDF

References


[1] M. Weinmann, A. N. Mishra, L. F. Kaiser, and J. Brocke, “The attraction effect in crowdfunding,” Inf. Syst. Res., vol. 34, no. 3, pp. 1276–1295, doi: 10.1287/isre.2022.1152.

[2] G. Castillo, “The attraction effect and its explanations,” Games Econ. Behav., vol. 119, pp. 123–147, doi: 10.1016/j.geb.2019.10.012.

[3] S. P. Anderson and L. Celik, “Product line design,” J. Econ. Theory, vol. 157, pp. 517–526, doi: 10.1016/j.jet.2015.01.014.

[4] M. Armstrong, “Nonlinear pricing,” Annu. Rev. Econom., vol. 8, pp. 583–614, doi: 10.1146/annurev-economics-080614-115650.

[5] J. Zabel, “The hedonic model and the housing cycle,” Regional Science and Urban Economics, vol. 54, pp. 74–86, doi: 10.1016/j.regsciurbeco.2015.07.005.

[6] C. S. Hentschke, P. A. Tillmann, C. T. Formoso, V. L. M. Martins, and M. E. S. Echeveste, “Using conjoint analysis to understand customer preferences in customized low-income housebuilding projects,” Ambient. Construído, vol. 20, no. 1, pp. 247–262, doi: 10.1590/s1678-86212020000100372.

[7] D. Stenvall, P. Cerin, B. Sjö, and G. S. Uddin, “Does energy efficiency matter for prices of tenant-owned apartments?,” Environ. Sci. Pollut. Res., vol. 29, pp. 66793–66807, doi: 10.1007/s11356-022-20482-w.

[8] I. Kaliszewski and D. Podkopaev, “Simple additive weighting—A metamodel for multiple criteria decision analysis methods,” Expert Syst. Appl., vol. 54, pp. 155–161, doi: 10.1016/j.eswa.2016.01.042.

[9] T. Dumbalska, V. Li, K. Tsetsos, and C. Summerfield, “A map of decoy influence in human multialternative choice,” Proc. Natl. Acad. Sci., vol. 117, no. 40, pp. 25169–25178, doi: 10.1073/pnas.2005058117.

[10] J. Liao, Y. Chen, W. Lin, and L. Mo, “The influence of distance between decoy and target on context effect: Attraction or repulsion?,” J. Behav. Decis. Mak., vol. 34, no. 3, pp. 432–447, doi: 10.1002/bdm.2220.

[11] P. K. Padamwar, J. Dawra, and V. K. Kalakbandi, “The impact of range extension on the attraction effect,” J. Bus. Res., vol. 126, pp. 565–577, doi: 10.1016/j.jbusres.2019.12.017.

[12] M. Usher, K. Tsetsos, M. Glickman, and N. Chater, “Selective Integration: An Attentional Theory of Choice Biases and Adaptive Choice,” Curr. Dir. Psychol. Sci., vol. 28, no. 6, pp. 552–559, doi: 10.1177/0963721419862277.

[13] E. J. Johnson et al., “Beyond nudges: Tools of a choice architecture,” Mark. Lett., vol. 23, no. 2, pp. 487–504, doi: 10.1007/s11002-012-9186-1.

[14] P. G. Hansen and A. M. Jespersen, “Nudge and the manipulation of choice,” Eur. J. Risk Regul., vol. 4, no. 1, pp. 3–28, doi: 10.1017/S1867299X00002762.

[15] P. Michaelsen, “Transparency and nudging: An overview and methodological critique of empirical investigations,” Behav. Public Policy, vol. 8, no. 4, pp. 807–817, doi: 10.1017/bpp.2024.7.

[16] T. Grüne-Yanoff and R. Hertwig, “Nudge versus boost: How coherent are policy and theory?,” Minds Mach., vol. 26, pp. 149–183, doi: 10.1007/s11023-015-9367-9.

[17] S. Hess, A. Daly, and R. Batley, “Revisiting consistency with random utility maximisation: Theory and implications for practical work,” Theory Decis., vol. 84, no. 2, pp. 181–204, doi: 10.1007/s11238-017-9651-7.

[18] D. Naous and C. Legner, “Leveraging market research techniques in IS: A review and framework of conjoint analysis studies in the IS discipline,” Commun. Assoc. Inf. Syst., vol. 49, Articl, doi: 10.17705/1CAIS.04906.

[19] Z. R. Gabidullina, “The problem of projecting the origin of Euclidean space onto the convex polyhedron,” Lobachevskii J. Math., vol. 39, no. 1, pp. 35–45, doi: 10.1134/S1995080218010110.

[20] M. S. Spektor, S. Bhatia, and S. Gluth, “The elusiveness of context effects in decision making,” Trends in Cognitive Sciences, vol. 25, no. 10, pp. 843–854, doi: 10.1016/j.tics.2021.07.011.

[21] J. Więckowski and W. Sałabun, “Sensitivity analysis approaches in multi-criteria decision analysis: A systematic review,” Appl. Soft Comput., vol. 148, p. 110915, doi: 10.1016/j.asoc.2023.110915.

[22] G. Demir, P. Chatterjee, and D. Pamucar, “Sensitivity analysis in multi-criteria decision making: A state-of-the-art research perspective using bibliometric analysis,” Expert Syst. Appl., vol. 237, p. 121660, doi: 10.1016/j.eswa.2023.121660.

[23] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 2nd ed. Springer. doi: 10.1007/978-3-319-48311-5.

[24] M. Weinmann, C. Schneider, and J. Brocke, “Digital nudging,” Bus. Inf. Syst. Eng., vol. 58, no. 6, pp. 433–436, doi: 10.1007/s12599-016-0453-1.




DOI: https://doi.org/10.18860/cauchy.v10i2.36937

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sentot Eko Baskoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.