Modified of Roots Finding Algorithm of High Degree Polynomials
Abstract
Keywords
Full Text:
PDFReferences
Aberth, O., 1973a. Iteration Methods for Finding all Zeros of a Polynomial Simultaneously. Math. Comput., 122 27, 339–344.
Aberth, O., 1973b. Iteration Methods for Finding all Zeros of a Polynomial Simultaneously. Math. Comput. 27, 339–344.
Al-Swaftah, A., Burqan, A., Khandaqji, M., 2023. Estimations of the Bounds for the Zeros of Polynomials Using Matrices, in: Zeidan, D., Cortés, J.C., Burqan, A., Qazza, A., Merker, J., Gharib, G. (Eds.), Mathematics and Computation. Springer Nature, Singapore, pp. 25–37. https://doi.org/10.1007/978-981-99-0447-1_3
Batra, P., 1998. Improvement of a convergence condition for the Durand-Kemer iteration. J. Comput. Appl. Math. 96, 117–125.
Cameron, T.R., 2019. An effective implementation of a modified Laguerre method for the roots of a polynomial. Numer. Algorithms 82, 1065–1084. https://doi.org/10.1007/s11075-018-0641-9
Corless, R.M., Sevyeri, L.R., 2020. The Runge Example for Interpolation and Wilkinson’s Examples for Rootfinding. SIAM Rev. 62, 231–243. https://doi.org/10.1137/18M1181985
Deren, W.,Fengguang, Z., 1991. On the determination of the safe initial approximation for the Durand-Kerner algorithm. J. Comput. Appl. Math. 38, 447–456. https://doi.org/10.1016/0377-0427(91)90188-P
Gallian, J.A., 2020. Contemporary abstract algebra, Tenth edition. ed. Chapman & Hall/CRC, Boca Raton.
Guggenheimer, H., 1986. Initial approximations in Durand-Kerner’s root finding method. BIT 26, 537–539. https://doi.org/10.1007/BF01935059
Hall, F.J., Marsli, R.M., Marsli, R.M., 2025. An application of Gelfand’s formula in approximating the roots of polynomials. https://doi.org/10.48550/arXiv.2505.03753
Han, D., 2000. THE CONVERGENCE OF DURAND-KERNER METHOD FOR SIMULTANEOUSLY FINDING ALL ZEROS OF THE POLYNOMIAL. J. Comput. Math. 18, 567–570.
Imbach, R., Pan, V.Y., Yap, C., Kotsireas, I.S., Zaderman, V., 2019. Root-Finding with Implicit Deflation, in: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (Eds.), Computer Algebra in Scientific Computing. Springer International Publishing, Cham, pp. 236–245. https://doi.org/10.1007/978-3-030-26831 2_16
Jain, V.K., 1990a. On Cauchy’s bound for zeros of a polynomial. Approx. Theory Its Appl. 6, 18–24. https://doi.org/10.1007/BF02836305
Jain, V.K., 1990b. On Cauchy’s bound for zeros of a polynomial. Approx. Theory Its Appl. 6, 18–24. https://doi.org/10.1007/BF02836305
Kan, J. van, Segal, G., Vermolen, F., 2023. Numerical Methods in Scientific Computing. TU Delft OPEN Publishing. Khomovsky, D.I., 2020. On using symmetric polynomials for constructing root finding methods. Math. Comput. 89, 2321–2331. https://doi.org/10.1090/mcom/3531 Kjellberg, G., 1984. Two observations on Durand-Kerner’s root-finding method. BIT Numer. Math. 24, 556–559. https://doi.org/10.1007/BF01934913
Liu, B., Yang, Y., Yu, M., 2024. Enhancing Numerical Stability in Multiport Network Synthesis with Modified DK Method, in: 2024 IEEE International Microwave Filter Workshop (IMFW). Presented at the 2024 IEEE International Microwave Filter Workshop (IMFW), IEEE, Cocoa Beach, FL, USA, pp. 170–172. https://doi.org/10.1109/IMFW59690.2024.10477159
Madsen, K., 1973. A root-finding algorithm based on Newton’s method. BIT Numer. Math. 13, 71–75.
Marcheva, P.I., 2023. Fixed points and convergence of iteration methods for simultaneous approximation of polynomial zeros. Univversity Of Plovdiv “Paisii Hilendarski,” Plodiv.
Marcheva, P.I., Ivanov, S.I., 2022. On the semilocal convergence of a modified weierstrass method for the simultaneous computation of polynomial zeros. Presented at the INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020, Rhodes, Greece, p. 420012. https://doi.org/10.1063/5.0082007
Marcheva, P.I., Ivanov, S.I., 2020. Convergence Analysis of a Modified Weierstrass Method for the Simultaneous Determination of Polynomial Zeros. Symmetry 12, 1408. https://doi.org/10.3390/sym12091408
Milovanović, G.V., Mir, A., Ahmad, A., 2022. On the zeros of a quaternionic polynomial with restricted coefficients. Linear Algebra Its Appl. 653, 231–245. https://doi.org/10.1016/j.laa.2022.08.010 Orchard, H.J., 1989. The Laguerre method for finding the zeros of polynomials. IEEE Trans. Circuits Syst. 36, 1377–1381. https://doi.org/10.1109/31.41294 Pan, V.Y., 2022a. New Progress in Classic Area: Polynomial Root-squaring and Root-finding. https://doi.org/10.48550/arXiv.2206.01727
Pan, V.Y., 2022b. New Progress in Classic Area: Polynomial Root-squaring and Root-finding. https://doi.org/10.48550/arXiv.2206.01727
Pan, V.Y., 1997. Solving a Polynomial Equation: Some History and Recent Progress. SIAM Rev. 39, 187–220. https://doi.org/10.1137/S0036144595288554
Reinke, B., Schleicher, D., Stoll, M., 2023a. The Weierstrass–Durand–Kerner root finder is not generally convergent. Math. Comput. 92, 839–866. https://doi.org/10.1090/mcom/3783
Reinke, B., Schleicher, D., Stoll, M., 2023b. The Weierstrass–Durand–Kerner root finder is not generally convergent. Math. Comput. 92, 839–866. https://doi.org/10.1090/mcom/3783
Sanjoyo, B., Yunus, M., Hidayat, N., 2025. A New Initial Approximation Bound in the Durand Kerner Algorithm for Finding Polynomial Zeros. Presented at the the 9th International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2025, Surabaya.
Shams, M., Kausar, N., Araci, S., Oros, G.I., 2023a. Numerical scheme for estimating all roots of non-linear equations with applications. AIMS Math. 8, 23603–23620. https://doi.org/10.3934/math.20231200
Shams, M., Kausar, N., Araci, S., Oros, G.I., 2023b. Numerical scheme for estimating all roots of non-linear equations with applications. AIMS Math. 8, 23603–23620. https://doi.org/10.3934/math.20231200
Shams, M., Rafiq, N., Kausar, N., Agarwal, P., Park, C., Momani, S., 2021. Efficient iterative methods for finding simultaneously all the multiple roots of polynomial equation. Adv. Differ. Equ. 2021, 495. https://doi.org/10.1186/s13662-021-03649-6 Numerical
Tassaddiq, A., Qureshi, S., Soomro, A., Hincal, E., Baleanu, D., Shaikh, A.A., 2021. A New Three-Step Root Finding Method and Its Fractal Global Behavior. Fractal Fract. 5, 204. https://doi.org/10.3390/fractalfract5040204
Wilkinson, J.H., 1959. The evaluation of the zeros of ill-conditioned polynomials. Part II. Numer. Math. 1, 167 180. https://doi.org/10.1007/BF01386382
DOI: https://doi.org/10.18860/cauchy.v10i2.37278
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bandung Arry Sanjoyo, Mahmud Yunus, Nurul Hidayat, Nurul Hidayat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








