Sensitivity of Bayesian Truncated Spline Regression to Prior and Knot Configuration in Stunting Models

Septi Nafisa Ulluya Zahra, Adji Ahmad Rinaldo Fernandes, Achmad Efendi, Solimun Solimun, Alfiyah Hanun Nasywa, Fachira Haneinanda Junianto

Abstract


This study develops a Bayesian bi-response regression model using a truncated spline approach to examine nonlinear effects of economic, dietary, and environmental factors on nutritional and physical stunting. Sensitivity analysis was conducted to evaluate the influence of prior types and knot numbers on model performance using Deviance Information Criterion (DIC), Root Mean Square Error (RMSE), and bias. Results show that the informative Normal–Gamma prior combination yields the best performance, with the lowest DIC, smallest RMSE, and minimal bias. Models with three knots provide higher predictive accuracy, while noninformative Uniform priors cause instability and overfitting. Overall, the findings indicate that prior specification has a stronger effect on model robustness than the number of knots, emphasizing the importance of informative priors in Bayesian spline modeling for understanding complex, nonlinear determinants of child stunting.

Keywords


Sensitivity Analysis; Bayesian Regression; Nonparametric Regression; Truncated Spline; Stunting

Full Text:

PDF

References


D. Headey, A. Palloni, and N. Prasada Rao, “Global trends and inequalities in childhood

stunting,” The Lancet Global Health, vol. 11, no. 4, e551–e563, 2023.

T. U. Chikako, A.-A. Seidu, J. Hagan John Elvis, and B. O. Ahinkorah, “Complex multilevel modelling of the individual, household and regional level variability in predictors

of undernutrition among children aged 6–59 months in ethiopia,” Nutrients, vol. 13, no. 9, p. 3018, 2021. doi: 10.3390/nu13093018.

D. Dwomoh, C. Sewor, S. K. Annim, S. Stranges, N.-B. Kandala, and A. K. Amegah, “Do dietary practices and household environmental quality mediate socio-economic inequalities

in child undernutrition risk in west africa?” Public Health Nutrition, vol. 26, no. 5, pp. 1022 1033, 2022. doi: 10.1017/S1368980022002269.

Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice. Princeton

University Press, 2007.

R. Eubank, Nonparametric Regression and Spline Smoothing. Marcel Dekker, 1999.

A. S. Suriaslan, I. N. Budiantara, and V. Ratnasari, “Truncated spline regression for

binary response: A comparative study of nonparametric and semiparametric approaches,”

Communications in Mathematical Biology and Neuroscience, vol. 2025, p. 51, 2025. doi:

28919/cmbn/9209.

D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric Regression. Cambridge

University Press, 2003.

S. Lang and A. Brezger, “Bayesian p-splines,” Journal of Statistical Software, pp. 183–212,

doi: 10.1198/1061860043010.

L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regression: Models, Methods and Applications.

Springer, 2021.

M. C. Edwards, R. Meyer, and N. Christensen, “Bayesian nonparametric spectral density

estimation using B-spline priors,” Statistics and Computing, vol. 29, pp. 67–78, 2019. doi:

1007/s11222-017-9796-9.

P. Gustafson, “Bayesian sensitivity analysis: Theoretical developments and applications,”

Statistical Science, vol. 35, no. 2, pp. 235–256, 2020.

T. Ohigashi and S. Sugasawa, “Efficient prior sensitivity and tipping-point analysis for medi

cal research: Revisiting sampling importance resampling,” arXiv e-prints, arXiv:2510.10034,

Oct. 2025, Art. no. arXiv:2510.10034. doi: 10.48550/arXiv.2510.10034.

J. J. Abellan, R. G. Cowell, and S. Moral, “Robustness and sensitivity analysis in bayesian

networks revisited,” Artificial Intelligence, vol. 330, p. 104052, 2024.

H. Jia, T. Xu, S. Liang, P. Zhao, and C. Xu, “Bayesian framework of parameter sensitivity,

uncertainty, and identifiability analysis in complex water quality models,” Environmental

Modelling & Software, vol. 109, pp. 324–335, 2018. doi: 10.1016/j.envsoft.2018.03.001.

D. K. Kinyoki, J. A. Berkley, G. M. Moloney, et al., “Environmental predictors of stunting

among children under-five in somalia: Cross-sectional studies from 2007 to 2010,” BMC

Public Health, vol. 16, p. 654, 2016. doi: 10.1186/s12889-016-3320-6.

S. Adi, I. Krisnana, P. D. Rahmawati, and U. Maghfiroh, “Environmental factors that

affect the incidence of stunting in under-five children: A literature review,” Pediomaternal

Nursing Journal, vol. 9, no. 1, pp. 42–44, 2023. doi: 10.20473/pmnj.v9i1.43863.

E. Purwita, “Determinants of stunting in children under five in rural areas,” Midwifery

Journal, vol. 10, no. 4, 2022.

P. Y. Tan et al., “Prevalence and key determinants of the triple burden of childhood

malnutrition in southeast asian countries: A systematic review and meta-analysis within

an adapted socio-ecological framework,” Critical Reviews in Food Science and Nutrition,

vol. 65, no. 28, pp. 5683–5697, 2024. doi: 10.1080/10408398.2024.2419539.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, 3rd. Chapman and Hall/CRC, 2014.

J. M. Bernardo and A. F. M. Smith, Bayesian Theory. Wiley, 2022.

P. D. Hoff, A First Course in Bayesian Statistical Methods. Springer, 2021.

O. Bilal, A. Hekmat, I. Shahzad, et al., “Boosting machine learning accuracy for cardiac

disease prediction: The role of advanced feature engineering and model optimization,”

Review of Socionetwork Strategies, vol. 19, pp. 271–300, 2025. doi: 10.1007/s12626-025

-w.

Y. Wang and D. M. Blei, “The blessings of multiple causes,” Journal of the American

Statistical Association, vol. 114, no. 528, pp. 1574–1596, 2019.

D. Wu, H. G. Park, C. R. Grudzen, and K. S. Goldfeld, “Bayesian hierarchical penalized

spline models for immediate and time-varying intervention effects in stepped wedge cluster

randomized trials,” Statistics in Medicine, vol. 44, e10304, 2025. doi: 10.1002/sim.10304.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, Global

Sensitivity Analysis: The Primer. John Wiley & Sons, 2008.

A. A. R. Fernandes and S. Solimun, Applied Multivariate Statistics for Social and Manage

ment Sciences. Springer, 2022.

B. Tobias, L. Kuhlmann, and L. Fahrmeir, “Adaptive bayesian nonparametric regression

with dynamic smoothness priors,” Journal of Computational and Graphical Statistics,

vol. 34, no. 2, pp. 456–474, 2025. doi: 10.3390/math13071162.

A. Thielmann, T. Kneib, and B. Säfken, “Enhancing adaptive spline regression: An

evolutionary approach to optimal knot placement and smoothing parameter selection,”

Journal of Computational and Graphical Statistics, vol. 34, no. 4, pp. 1397–1409, 2025. doi:

1080/10618600.2025.2450458.

E. Edeh, X. Liang, and C. Cao, “Probing beyond: The impact of model size and prior

informativeness on bayesian sem fit indices,” Behavior Research Methods, vol. 57, p. 108,

doi: 10.3758/s13428-025-02609-2.

A. A. R. Fernandes, Solimun, and S. N. U. Zahra, Bayesian Truncated Spline Regression for

Stunting Models: Sensitivity to Prior and Knot Configuration. Malang, Indonesia: Faculty

of Mathematics and Natural Sciences, Brawijaya University, 2025, Research Grant Project

Report.

J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 8th.

Boston, MA: Cengage Learning, 2019.

P. Bach and N. Klein, “Anisotropic multidimensional smoothing using bayesian tensor

product p-splines,” Statistics and Computing, vol. 35, p. 43, 2025. doi: 10.1007/s11222-0

-10569-y.




DOI: https://doi.org/10.18860/cauchy.v10i2.37381

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Septi Nafisa Ulluya Zahra, Adji Ahmad Rinaldo Fernandes, Achmad Efendi, Solimun Solimun, Alfiyah Hanun Nasywa, Fachira Haneinanda Junianto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.