Sensitivity of Bayesian Truncated Spline Regression to Prior and Knot Configuration in Stunting Models
Abstract
Keywords
Full Text:
PDFReferences
D. Headey, A. Palloni, and N. Prasada Rao, “Global trends and inequalities in childhood
stunting,” The Lancet Global Health, vol. 11, no. 4, e551–e563, 2023.
T. U. Chikako, A.-A. Seidu, J. Hagan John Elvis, and B. O. Ahinkorah, “Complex multilevel modelling of the individual, household and regional level variability in predictors
of undernutrition among children aged 6–59 months in ethiopia,” Nutrients, vol. 13, no. 9, p. 3018, 2021. doi: 10.3390/nu13093018.
D. Dwomoh, C. Sewor, S. K. Annim, S. Stranges, N.-B. Kandala, and A. K. Amegah, “Do dietary practices and household environmental quality mediate socio-economic inequalities
in child undernutrition risk in west africa?” Public Health Nutrition, vol. 26, no. 5, pp. 1022 1033, 2022. doi: 10.1017/S1368980022002269.
Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice. Princeton
University Press, 2007.
R. Eubank, Nonparametric Regression and Spline Smoothing. Marcel Dekker, 1999.
A. S. Suriaslan, I. N. Budiantara, and V. Ratnasari, “Truncated spline regression for
binary response: A comparative study of nonparametric and semiparametric approaches,”
Communications in Mathematical Biology and Neuroscience, vol. 2025, p. 51, 2025. doi:
28919/cmbn/9209.
D. Ruppert, M. P. Wand, and R. J. Carroll, Semiparametric Regression. Cambridge
University Press, 2003.
S. Lang and A. Brezger, “Bayesian p-splines,” Journal of Statistical Software, pp. 183–212,
doi: 10.1198/1061860043010.
L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regression: Models, Methods and Applications.
Springer, 2021.
M. C. Edwards, R. Meyer, and N. Christensen, “Bayesian nonparametric spectral density
estimation using B-spline priors,” Statistics and Computing, vol. 29, pp. 67–78, 2019. doi:
1007/s11222-017-9796-9.
P. Gustafson, “Bayesian sensitivity analysis: Theoretical developments and applications,”
Statistical Science, vol. 35, no. 2, pp. 235–256, 2020.
T. Ohigashi and S. Sugasawa, “Efficient prior sensitivity and tipping-point analysis for medi
cal research: Revisiting sampling importance resampling,” arXiv e-prints, arXiv:2510.10034,
Oct. 2025, Art. no. arXiv:2510.10034. doi: 10.48550/arXiv.2510.10034.
J. J. Abellan, R. G. Cowell, and S. Moral, “Robustness and sensitivity analysis in bayesian
networks revisited,” Artificial Intelligence, vol. 330, p. 104052, 2024.
H. Jia, T. Xu, S. Liang, P. Zhao, and C. Xu, “Bayesian framework of parameter sensitivity,
uncertainty, and identifiability analysis in complex water quality models,” Environmental
Modelling & Software, vol. 109, pp. 324–335, 2018. doi: 10.1016/j.envsoft.2018.03.001.
D. K. Kinyoki, J. A. Berkley, G. M. Moloney, et al., “Environmental predictors of stunting
among children under-five in somalia: Cross-sectional studies from 2007 to 2010,” BMC
Public Health, vol. 16, p. 654, 2016. doi: 10.1186/s12889-016-3320-6.
S. Adi, I. Krisnana, P. D. Rahmawati, and U. Maghfiroh, “Environmental factors that
affect the incidence of stunting in under-five children: A literature review,” Pediomaternal
Nursing Journal, vol. 9, no. 1, pp. 42–44, 2023. doi: 10.20473/pmnj.v9i1.43863.
E. Purwita, “Determinants of stunting in children under five in rural areas,” Midwifery
Journal, vol. 10, no. 4, 2022.
P. Y. Tan et al., “Prevalence and key determinants of the triple burden of childhood
malnutrition in southeast asian countries: A systematic review and meta-analysis within
an adapted socio-ecological framework,” Critical Reviews in Food Science and Nutrition,
vol. 65, no. 28, pp. 5683–5697, 2024. doi: 10.1080/10408398.2024.2419539.
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, 3rd. Chapman and Hall/CRC, 2014.
J. M. Bernardo and A. F. M. Smith, Bayesian Theory. Wiley, 2022.
P. D. Hoff, A First Course in Bayesian Statistical Methods. Springer, 2021.
O. Bilal, A. Hekmat, I. Shahzad, et al., “Boosting machine learning accuracy for cardiac
disease prediction: The role of advanced feature engineering and model optimization,”
Review of Socionetwork Strategies, vol. 19, pp. 271–300, 2025. doi: 10.1007/s12626-025
-w.
Y. Wang and D. M. Blei, “The blessings of multiple causes,” Journal of the American
Statistical Association, vol. 114, no. 528, pp. 1574–1596, 2019.
D. Wu, H. G. Park, C. R. Grudzen, and K. S. Goldfeld, “Bayesian hierarchical penalized
spline models for immediate and time-varying intervention effects in stepped wedge cluster
randomized trials,” Statistics in Medicine, vol. 44, e10304, 2025. doi: 10.1002/sim.10304.
A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, Global
Sensitivity Analysis: The Primer. John Wiley & Sons, 2008.
A. A. R. Fernandes and S. Solimun, Applied Multivariate Statistics for Social and Manage
ment Sciences. Springer, 2022.
B. Tobias, L. Kuhlmann, and L. Fahrmeir, “Adaptive bayesian nonparametric regression
with dynamic smoothness priors,” Journal of Computational and Graphical Statistics,
vol. 34, no. 2, pp. 456–474, 2025. doi: 10.3390/math13071162.
A. Thielmann, T. Kneib, and B. Säfken, “Enhancing adaptive spline regression: An
evolutionary approach to optimal knot placement and smoothing parameter selection,”
Journal of Computational and Graphical Statistics, vol. 34, no. 4, pp. 1397–1409, 2025. doi:
1080/10618600.2025.2450458.
E. Edeh, X. Liang, and C. Cao, “Probing beyond: The impact of model size and prior
informativeness on bayesian sem fit indices,” Behavior Research Methods, vol. 57, p. 108,
doi: 10.3758/s13428-025-02609-2.
A. A. R. Fernandes, Solimun, and S. N. U. Zahra, Bayesian Truncated Spline Regression for
Stunting Models: Sensitivity to Prior and Knot Configuration. Malang, Indonesia: Faculty
of Mathematics and Natural Sciences, Brawijaya University, 2025, Research Grant Project
Report.
J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 8th.
Boston, MA: Cengage Learning, 2019.
P. Bach and N. Klein, “Anisotropic multidimensional smoothing using bayesian tensor
product p-splines,” Statistics and Computing, vol. 35, p. 43, 2025. doi: 10.1007/s11222-0
-10569-y.
DOI: https://doi.org/10.18860/cauchy.v10i2.37381
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Septi Nafisa Ulluya Zahra, Adji Ahmad Rinaldo Fernandes, Achmad Efendi, Solimun Solimun, Alfiyah Hanun Nasywa, Fachira Haneinanda Junianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







