Triple-Mutation Bat Algorithm–Optimized Extreme Learning Machine for Fetal Health Classification

Prabowo Wisnumurti, Syaiful Anam, Mohammad Muslikh

Abstract


Fetal health assessment is crucial for preventing perinatal risks; however, the manual interpretation of cardiotocography (CTG) signals remains susceptible to variability and diagnostic delays. To address this challenge, this study aims to develop an accurate and computationally efficient model for automated fetal health classification. This study proposes a hybrid intelligent model named TMBA–ELM (Extreme Learning Machine parameters optimized with Triple Mutation Bat Algorithm) for accurate and efficient classification of fetal health conditions. The purpose of this research is to improve the diagnostic reliability of CTG data analysis while maintaining low computational complexity. The proposed TMBA–ELM integrates the adaptive exploration–exploitation mechanism of the Tuned Modified Bat Algorithm (BA) with the fast learning capability of the Extreme Learning Machine (ELM) to optimize both the hidden neuron size and the activation function. Three adaptive mutation strategies: Cauchy, Gaussian, and position modification—are applied to enhance convergence and population diversity. The model was evaluated using an imbalanced CTG dataset containing 2,126 samples classified as Normal, Suspect, or Pathological, and benchmarked against BA-ELM (ELM parameters tunned with BA), EMD-FA-ELM (ELM parameters tunned with firefly algorithm and the data decompositioned by empirical mode decomposition), and PSO-EM-ELM (error minimized ELM parameters tunned with particle swarm optimization) using five performance metrics: accuracy, precision, recall, F1-score, and computation time. Experimental results show that TMBA–ELM achieve high performance with 91.4% accuracy, 82.8% precision, 77.77% recall, and 79.93% F1-score, while maintaining the high computation time (164.23 second) with moderate stability (deviation = 12.76 second). The model also demonstrates improved recall for minority classes, confirming robustness in handling data imbalance. Although have bad computational efficiency, TMBA-ELM offers highest recall and F1-score, making it suitable for real-time fetal monitoring. The originality of this study lies in integrating triple adaptive mutation strategies within the Bat Algorithm to optimize ELM parameters.

Keywords


Fetal Health Classification; CTG; TMBA-ELM

Full Text:

PDF

References


[1] R. R. Dixit, “Predicting fetal health using cardiotocograms: A machine learning approach,” Journal of Advanced Analytics in Healthcare Management, vol. 4, no. 1, pp. 43–57, 2021. DOI: 10.1109/ICSC59624.2024.10973645.

[2] W. H. Organization, “Maternal morbidity and well-being.” https://www.who.int/teams/maternal-newborn-child-adolescent-health-and-ageing/maternal-health/maternal-morbidity-and-well-being, 2025. May 12, 2025.

[3] J. W. D. K. S. S. J. K. K. P. S. R. R. S. P. A. Mehbodniya, A. J. P. Lazer and S. Sengan, “Fetal health classification from cardiotocographic data using machine learning,” Expert Systems, vol. 39, no. 6, p. e12899, 2022. DOI: 10.1111/exsy.12899.

[4] L. B. C. W. Niklas Kuhl, Marc Goutier and D. Martin, “Human vs. supervised machine learning: Who learns patterns faster?,” Cognitive System Research, vol. 1, pp. 1–34, 2020. DOI: 10.1016/j.cogsys.2022.09.002.

[5] A. C. Muller and S. Guido, Introduction to Machine Learning with Python. O’Reilly Media, 1 ed., 2017.

[6] R. L. I. E. Naqa and M. J. Murphy, Machine Learning in Radiation Oncology. Springer, 1 ed., 2015. DOI: 10.1007/978-3-319-18305-3.

[7] D. Y. Z. Z. H. F. T. Y. Y. W. B. Yuan, W. Wang and S. Zhong, “Nondestructive evaluation of thermal barrier coatings thickness using terahertz technique combined with pca-ga-elm algorithm,” Coatings, vol. 12, no. 3, p. 390, 2022. DOI: 10.3390/coatings12030390.

[8] H. G. F. M. F. Z. W. Yuan, F. Liu and M. Jiang, “Accuracy-improved fault diagnosis method for rolling bearing based on enhanced esgmd-cc and ba-elm model,” Shock and Vibration, pp. 1–16, 2024. DOI: 10.1155/2024/8026402.

[9] A. A. B. S. M. A. M. R. D. S. K. V. Lahoura, H. Singh and K. Cengiz, “Cloud computing-based framework for breast cancer diagnosis using extreme learning machine,” Diagnostics, vol. 11, no. 2, p. 241, 2021. DOI: 10.3390/diagnostics11020241.

[10] J. W. D. Ge, G. Jin and Z. Zhang, “A novel ba-abc-elm model for estimating state of health of lithium-ion batteries,” Energy Reports, vol. 13, pp. 465–476, 2025. DOI: 10.1016/j.egyr.2024.12.036.

[11] Q.-Y. Z. G.-B. Huang and C.-K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. DOI: 10.1016/j.neucom.2005.12.126.

[12] M. A. M. A. Albadr, S. Tiun and F. Al-Dhief, “Genetic algorithm based on natural selection theory for optimization problems,” Symmetry, vol. 12, no. 11, p. 1758, 2020. DOI: 10.3390/sym12111758.

[13] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284 of Studies in Computational Intelligence, pp. 65–74, 2010. DOI: 10.1007/978-3-642-12538-66.

[14] L. W. F. W. Q. Liu, J. Li and W. Xiao, “A novel bat algorithm with double mutation operators and its application to low-velocity impact localization problem,” Engineering Applications of Artificial Intelligence, vol. 90, p. 103505, 2020. DOI: 10.1016/j.engappai.2020.103505.

[15] S. M. L. T. P. D. S. K. D. Prachitara Satapathy, Sabita Chaine, “Han evolutionary emd-fa-elm approach for short term wind power prediction using wind speed as input,” Odisha International Conferences, vol. 2, pp. 1–19, 2022. DOI: 10.1109/ODICON54453.2022.10010060.

[16] W. Sun and C. Zhang, “A hybrid ba-elm model based on factor analysis and similar-day approach for short-term load forecasting,” Energies, vol. 11, pp. 1–18, 2018. DOI: 10.3390/en11051282.

[17] Y. R. . G. W. Zhongda Tian, “Short-term wind speed prediction based on improved pso algorithm optimized em-elm,” Energy Sources, vol. 41, pp. 1–18, 2019. DOI: 10.1080/15567036.2018.1495782.

[18] B. Z. P. Ramachandran and Q. V. Le, “Searching for activation functions,” Neural and Evolutionary Computing, pp. 1–24, 2017. DOI: 10.48550/arXiv.1710.05941.

[19] X.-S. Yang, “Bat algorithm for multi-objective optimisation,” International Journal of Bio-Inspired Computation, vol. 3, no. 5, pp. 267–274, 2011. DOI: 10.1504/IJBIC.2011.042259.

[20] Larxel, “Fetal health classification,” 2020. https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification.

[21] C. Y. S. D. Ayres-de Campos and E. Chandraharan, “Figo consensus guidelines on intrapartum fetal monitoring: Cardiotocography,” International Journal of Gynecology and Obstetrics, vol. 131, pp. 13–24, 2015. DOI: 10.1016/j.ijgo.2015.06.020.

[22] American College of Obstetricians and Gynecologists, “Acog practice bulletin no. 106: Intrapartum fetal heart rate monitoring: Nomenclature, interpretation, and general management principles,” Obstetrics & Gynecology, vol. 114, pp. 192–202, Jul 2009. DOI: 10.1097/AOG.0b013e3181aef106.

[23] World Health Organization, WHO Recommendations on Intrapartum Care for a Positive Childbirth Experience. Geneva: World Health Organization, 2018. DOI: 10.1111/1471-0528.15397.

[24] J. Li, Y. Jiang, L. Liu, and X. Liu, “Passive fetal movement signal detection system based on intelligent sensing technology,” Journal of Healthcare Engineering, vol. 2021, pp. 1–10, 2021. DOI: 10.1155/2021/1745292.

[25] J. B. I. Campos, H. Gonçalves and L. Castro, “Fetal heart rate preprocessing techniques: A scoping review,” Bioengineering, vol. 11, no. 4, p. 368, 2024. DOI: 10.3390/bioengineering11040368.

[26] Y. Z. Z. Zhao and Y. Deng, “A comprehensive feature analysis of the fetal heart rate signal for the intelligent assessment of fetal state,” Journal of Clinical Medicine, vol. 7, no. 8, p. 223, 2018. DOI: 10.3390/jcm7080223.

[27] Z. C. Z. Zhao, Y. Zhang and Y. Deng, “Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network,” Frontiers in Physiology, vol. 10, no. 255, 2019. DOI: 10.3389/fphys.2019.00255.

[28] J. Spilka, V. Chudacek, M. Huptych, G. Georgoulas, C. Stylios, and M. Koucky, “Using nonlinear features for fetal heart rate classification,” Biomedical Signal Processing and Control, vol. 7, no. 4, pp. 350–357, 2012. DOI: 10.1016/j.bspc.2011.06.008.

[29] K. G. Megalooikonomou and G. N. Beligiannis, “Random forests machine learning applied to peer structural performance experimental columns database,” Applied Sciences, vol. 13, no. 23, p. 12821, 2023. DOI: 10.3390/app132312821.

[30] Y. Kovchegov, “A new life of pearson’s skewness,” Journal of Theoretical Probability, vol. 35, pp. 2896–2915, 2022. DOI: 10.1007/s10959-021-01149-7.

[31] E. Acuña and C. Rodríguez, “The treatment of missing values and its effect on classifier accuracy,” in Classification, Clustering and Data Mining Applications, pp. 639–647, 2004. DOI: 10.1007/978-3-642-17103-160.

[32] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, 2 ed., 2019.

[33] D. Berrar, “Cross-validation,” in Reference Module in Life Sciences. Encyclopedia of Bioinformatics and Computational Biology, Vol. 1, pp. 542–545, Elsevier, 2019. DOI: 10.1016/B978-0-12-809633-8.20349-X.

[34] A. Mishra, Machine Learning in the AWS Cloud: Add Intelligence to Applications with Amazon SageMaker and Amazon Rekognition. Sybex, Wiley, 2019. DOI: 10.1002/9781119556749.

[35] A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image segmentation: Analysis, selection, and tool,” BMC Medical Imaging, vol. 15, no. 1, p. 29, 2015. DOI: 10.1186/s12880-015-0068-x.




DOI: https://doi.org/10.18860/cauchy.v11i1.37525

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Prabowo Wisnumurti, Syaiful Anam, Mohammad Muslikh

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.